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Most authors in room acoustics qualify the mirror source method (MS-method) as the
only exact method to evaluate sound "elds in auditoria. But evidently nobody applies it. The
reason for this discrepancy is the abundantly high numbers of needed mirror sources which
are reported in the literature, although such estimations of needed numbers of mirror
sources mostly are used for the justi"cation of more or less heuristic modi"cations of the
MS-method. The present, intentionally tutorial article accentuates the analytical
foundations of the MS-method whereby the number of needed mirror sources is reduced
already. Further, the task of "eld evaluation in three-dimensional spaces is reduced to
a sequence of tasks in two-dimensional room edges. This not only allows the use of easier
geometrical computations in two dimensions, but also the sound "eld in corner areas can be
represented by a single (directional) source sitting on the corner line, so that only this
&&corner source'' must be mirror-re#ected in the further process. This procedure gives
a drastic reduction of the number of needed equivalent sources. Finally, the traditional
MS-method is not applicable in rooms with convex corners (the angle between the corner
#anks, measured on the room side, exceeds 1803). In such cases, the MS-method is combined
below with the second principle of superposition (PSP). It reduces the scattering task at
convex corners to two sub-tasks between one #ank and the median plane of the room wedge,
i.e., always in concave corner areas where the MS-method can be applied.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The mirror source method (MS-method) generally is said to be the only precise method to
evaluate sound "elds in auditoria, excited by a source Q (the &&original'' source). It is indeed
an exact method if the walls of the room are hard. If the walls are absorbent, the
MS-method is an approximation with analytical derivation and analytically de"nable
errors in the elementary process of re#ection of the "eld of Q at a wall. The larger the sum of
the heights of Q and of the immission point P above the wall, the better the precision.

The MS-method is described in text books mostly in one or two pages, and the
description concentrates on the geometrical principles for the construction of mirror
sources (MS). The purely geometrical considerations for the construction of MS lead to high
numbers of needed MS. This is the reason why, in fact, the MS-method is not applied in
practical tasks of room acoustics. It will be shown that acoustical principles reduce the
number of needed MS.

A number of modi"cations of the MS-method are described in the literature. The main
argument for such modi"cations is the &&expected'' high number of needed mirror sources.
The &&ray tracing method'' was introduced by Krokstadt et al. [1], and since then further
developed in many papers, especially by application of random emission of the rays [2].
Stephenson [3] substitutes the sound rays with &&sound particles'' shot from the sound
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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source into randomly distributed directions. VorlaK nder [4] and Stephenson [5] compare
the MS-method with the &&ray tracing method'' and the &&sound particle method'' with
respect to time of computation. VorlaK nder gives an estimation of the needed number of MS
with N

��
+(n

�
!1)o���, where n

�
is the number of walls and o

���
is the upper limit of the

considered orders of wall re#ections; Stephenson estimates the needed computing time in
a room with n

�
"24 walls and o

���
"7 in units of years. One can notice that these

estimations are based on purely geometrical and statistical considerations. For reduction of
the computing time, the classical &&ray tracing method'' substitutes the sound wave by a ray,
which is a straight line emanating from the source, carrying some sound energy, which is
specularly re#ected at the walls with a reduction of the energy according to the re#ection
coe$cients of the walls. In further modi"cations, the directions of ray emission are
randomly distributed (which introduces the Monte Carlo method into room acoustics). The
sound "eld in the point of immission, P, is measured by the energy sum of the incident rays.
It suggests substituting the rays by &&sound particles'' (also carrying some sound energy with
them) that are shot from the source and re#ected at the walls as in billiard playing. Because
the chance for a ray or a sound particle is small to hit a point P, the receiver is extended to
a &&box'', collecting rays or particles which pass nearby P. It is evident that many rays or
particles are sent out without ever hitting P (or the box at P). To overcome this ine$ciency,
at least partially, in a further modi"cation the rays are spreading as a cone. Some heuristic
assumptions must be made in this &&cone approach'' concerning the interaction of a cone
with a scattering object. It should be remarked that the problems of hitting P by a ray or
a particle are pseudo-problems, due to the artefacts of rays and sound particles; a similar
problem does not exist in analytical acoustics. The reported high numbers of needed mirror
sources come from statistical investigations about the number of rays or particles which
must be emitted randomly in order that summation at P of rays or particles gives
a prescribed precision, and by a not justi"ed identi"cation of that number with the number
of needed mirror sources.

As a consequence of the fundamental ideas of the modi"cations of the MS-method, all
modi"cations use as "eld quantity either energetic quantities or the absolute magnitude of
the sound pressure (squared) as sound "eld descriptors; thus, magnitudes of the sound
pressure from di!erent paths of propagation are summed up in the immission point. It is
clear that interference patterns of the sound pressure around a point of immission cannot be
evaluated with such methods.

It should also be noticed that all modi"cations use re#ection coe$cients �R �� or
absorption coe$cients �"1}�R �� for the characterization of absorbent walls. Mostly, the
absorption coe$cient for di!use sound incidence or for &&di!use re#ection'' is used. Di!use
re#ection, however, is another artefact in itself. An angular dependence of the sound
absorption is re-introduced by Lambert's law (an approximation taken from the optical
scattering at rough surfaces). It cannot be a task of the present paper to give a detailed
survey of the numerous papers about the MS-method, and the author should not be
misunderstood as though he were stating that the mentioned modi"cations of the
MS-method are the only existing forms of the MS-method in the literature.

In contrast to the mentioned modi"cations, the aim of the present paper is a description
and use of the MS-method as a method of computation of the complex, time harmonic
sound pressure (with time factor e��� which will be dropped) of the sound pressure "eld p(P)
in a room. Other aims are as follows: presentation of the acoustical foundations of the
MS-method; derivation of acoustical and analytical criteria for the interruption of
MS-production; reduction of the MS-method in three-dimensional (3-D) rooms to
a sequence of applications of the MS-method in two-dimensional (2-D) sub-spaces;
combination of the MS-method with a principle of superposition (PSP), in order to make
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the MS-method applicable in rooms with convex corners (e.g., for orchestra pits);
representation of the sound "eld in room edges by equivalent &&corner sources''.

These steps reduce the number of needed equivalent sources and make the so-modi"ed
MS-method applicable in practical tasks of room acoustics. If new approximations are
introduced, care is taken that their errors remain in the range of errors of the original
MS-method with absorbing walls.

The described combination of a classical topic (the MS-method) with rather simple
improvements nearly unavoidably makes the style of writing &&tutorial''. Fundamental facts
will be described verbally, supported with sketches where appropriate; important relations
will be presented as formulas. It is not intended to present computer programs or detailed
algorithms. However, relevant formulas will be given with some completeness, so that
a skilled programmer can write a program for the MS-method (the used geometrical
relations are described in Appendix A). In order to make the progress visible, the method
will be applied to a model of a concert hall, which is simple enough to trace the steps of
computation, but not too simple.

The sketches which are used to visualize a statement will mostly be 2-D not only because
2-D presentations are easier to draw, but also because "nally the application of the
MS-method in 3-D rooms will be &&broken down'' to a sequence of 2-D tasks.

2. THE OBJECT

The geometrical object is a room formed by plane walls=
�

. It is clearly de"ned what is
inside and outside of the room. The (original) source Q and the "eld point P always are
inside. A right-handed Cartesian system of co-ordinates x, y, z is laid over the room.

We shall distinguish between 3-D rooms with a point source as the original source, and
2-D rooms in which all walls are normal to a common plane (i.e., corners are parallel to each
other). 2-D rooms further will be called &&strictly 2-D'' if the original source, and hence all
MS, are line sources.

It is proposed sometimes to model small-size scatterers (such as pillars or handrails) with
plane facets and to apply the MS-method to those facets. The subdivision of the room
envelope into too small wall sections in combination with the MS-method not only
produces analytical and numerical nonsense (the scattered waves at such small facets are
very di!erent from MS-waves), but also the computational work increases immensely by the
subsequent generation of MS at such small faces. It would be easier and faster to solve the
task of scattering at suitable scatterers (e.g., cylinders or spheres). As a general rule for
the dimensions of walls to be considered, one can neglect walls with dimensions smaller
than about �

�
.

3. WALLS

The walls=
�

are plane. They are described by lists of edges,=
�

"�E
��

, E
��

, E
��

,2�,
which are ordered so that the sense of rotation in that order and the direction pointing to
the inside of the room make a right-handed system. Because the "rst three edges will be used
for the determination of the unit normal vector of the wall, these edges should not be
collinear, and they should agree with the general sense of rotation of wall edges. Edges may
be cyclically interchanged in a wall list. The order w"1, 2, 3,2 of the walls is arbitrary.

Wall couples form a room wedge; they either have a (straight) real corner if the walls are
intercepting, or they have a virtual corner. The walls of a couple include a wedge angle
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� (measured inside the room). Corners are &&concave'' when 0(�)�, and &&convex'' for
�(� )2�. Walls are parallel to each other, with the virtual corner at in"nity, if �"0;
and they are collinear if �"�. These situations must be treated as special cases.

The acoustic quali"cation of a wall will use its surface admittance G
�
. The MS-method

applies for the acoustic quali"cation of a wall its re#ection factor R
�
(�) for a plane wave

with incidence at the polar angle � formed by the normal to the wall and the connection line
of the MS with P. R

�
(�) depends on that angle, and thereby on the position of P, as

R
�
(�)"

cos �!Z
�
G

�
cos �#Z

�
G

�

, (1)

where Z
�

is the characteristic wave impedance. If the wall is bulk reacting one further has
G

�
"G

�
(�).

4. SOURCES

The original source Q and mirror sources (MS) may jointly be called sources; a clearer
distinction will be made when necessary. Sometimes we shall speak of a &&mother source''
which creates at a wall= (sometimes called &&mother wall'') an MS as &&daughter source''.
The symbol S will be used for mirror sources (mainly in the sketches); the symbol q will be
used for a source, either the original source Q or a mirror source S.

The fundamental task of the MS-method is the re#ection of a source at an in"nite wall
(see section 5). Analytical solutions seem to exist only for monopole point and line sources
(parallel to the wall). Generally, the MS-method is applied also for a directional source with

p
�
(r,�)"D(�)H���

�
(k

�
r) in strictly 2-D rooms with a line source, (2a)

p
�
(r, �, �)"D(�, �)h���

�
(k

�
r) in 2-D or 3-D rooms with a point source, (2b)

where D(�) or D(�, �) are source directivities, H���
�

(x) are cylindrical, and h���
�

(x) spherical
Hankel functions of the second kind. It should be mentioned that these forms of the source
"eld do not satisfy the wave equation (a directional factor cannot be associated with
a Hankel function of zero order). A similar violation of the wave equation is made by the
MS-approximation of the re#ected wave at an absorbent wall :

p
	
(r�, �)"R(�)H���

�
(k

�
r�), p

	
(r�, �)"R(�)h���

�
(k

�
r�), (3a, b)

where the co-ordinates r�, � are centred at the position of the MS. Such violations of the
wave equation are tolerated in the MS-method. Comparisons of results of the
MS-approximation with more precise evaluations of the re#ected sound "eld show that, in
most cases, the mentioned errors can be accepted, indeed.

5. FOUNDATION OF THE MIRROR SOURCE APPROXIMATION (in 2-D)

As mentioned already, the legitimization of the MS-method comes from an analytical
solution of the fundamental task of re#ection of the "eld of a line source (in 2-D; a point
source in 3-D) at a possibly absorbent, but in any case in"nite, plane wall (see Figure 1; see
e.g. reference [6] for line source re#ection, and reference [7] for point source re#ection).

An exact form of the re#ected "eld p


is (see reference [6] for the path C(�) of integration)

p


(r�, �

	
)"

1

��
��� �

R(�#�
	
)e���� 
����� d�. (4)
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Figure 1. A line source in Q with a height h above the absorbing plane, which is characterized by a normalized
surface admittance G. S is the mirror-re#ected point to Q and P is the "eld point.
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One gets by saddle point integration

p
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"
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Inserting this into equation (5) and collecting terms with derivatives R��(�
	
) of equal order

n "nally gives
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The factor in front of R(�
	
) is just the asymptotic expansion of H���

�
(k

�
r�). Thus, in a "rst

approximation (with respect to an angular variation of R(�
	
))
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This is the mirror source approximation (MS-approximation). One should keep in mind: the
MS-solution is only approximate if R(�

	
)Oconst(�

	
), i.e., for GO0 or �G �OR; then it

violates the wave equation; it determines precisely the meaning of R(�
	
); with that de"nition

(and only with that) it satis"es the wall boundary condition, it supposes k
�
r��1, i.e., large

distances dist(S, P); or more precisely: a great sum of the heights of Q and P over the wall; it
supposes that P is not under an angle �

	
with a strong angular variation ofR(�

	
); for grazing

incidence, i.e., Q and P on the wall, the in#uence of higher terms R��(�
	
) in equaton (8) is

important; the derivation further supposes that the wall does not guide a surface wave (but
this is only rarely the case in a restricted frequency range below a high-quality resonance;
but even then equation (8) is an approximation to the "eld in points not too close to the
wall; see reference [7] for a detailed discussion of the in#uence and the conditions of surface
waves).

There exists an analogous derivation of the MS-approximation for a point source in 3-D
with similar conditions and restrictions (see reference [7]).

The mentioned facts have important consequences: on the one hand, it makes no sense to
try to compute with a higher precision than the precision of the fundamental process of the
MS-method; on the other hand, the approximate character of this process does not give
a privilege to fantastic modi"cations of the MS-method.

6. GENERAL CRITERIA FOR MIRROR SOURCES

Mirror sources are created at a wall by a source inside the wall by the following steps:
mirror-re#ect the source position to behind the wall; multiply its source factor with R(�

	
); if

the source has a directivity factor D(�, �), re#ect that directivity, i.e. rotate it.
Any factor of the (possibly spherical) Hankel function of the "eld of a single source is

called the &&source factor''.
The form of the MS and the used co-ordinates should, if possible, be so that these steps

can be performed easily in the computations.
The right of an MS to exist is the satisfaction, together with its mother source, of the

boundary condition at the wall at which it was created by its mother source. Nothing else !
The "rst criterion for the generation of a daughter MS at a wall is that the mother source

irradiates the interior surface of that wall. As a consequence, if a source is outside a wall, it
does not create a daughter source at that wall. Especially, a mirror source will never be
mirror-re#ected back to the position of its mother source. We call this rule the &&inside
criterion''. The chain of MS-production is interrupted if this criterion is violated; otherwise
the daughter source would be &&illegal''.

7. FIELD ANGLE � OF A MIRROR SOURCE

The "eld angle of an MS gives a further important criterion for the interruption of
MS-production. The "eld angle is best explained for the case of re#ection of a source Q at
a plane wall which is subdivided in two parts with di!erent re#ection factors R

�
in them

(see Figure 2).
Although the source Q in the example of Figure 2 has only one position S for an MS,

there are indeed positioned two MS with di!erent angular ranges �
�
, �

�
of their "elds

because there are two di!erent source factorsR
�
,R

�
in both ranges. The "eld is unsteady at

the common #ank of the "eld angles. This is a consequence of the character of the
MS-method as an approximate solution which must be tolerated (below we shall see similar
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consequences at other occasions). In 3-D the "eld angle � is given by a polygonal pyramid
subtended by a wall = and with the source S in the apex.

The &&"eld angle criterion'' states two things. An MS creates in P a "eld contribution only
ifP is in its "eld angle (more precisely, on the interior side of the creating wall) and otherwise
we say &&the MS is ine!ective in P''. An MS generates a daughter MS at a wall= only, if the
wall is inside the range of its "eld angle (again on the interior side of the creating wall);
otherwise no boundary condition must be satis"ed at= for MS, and therefore the daughter
MS would be &&illegal''.

The additions in parentheses will be important for convex corners (see below). We can
describe the e!ect of the "eld angle with the word &&visibility''. A source q sees an object only
if that object is inside its "eld angle. If q does not see P , then q is ine!ective; if q does not see
a wall =, then q does not produce a daughter source with=.

The chain of MS-production is continued for an ine!ective MS (because a daughter MS
may become e!ective), but the chain is interrupted at an illegal MS.

Some problems are caused by walls = which are only partially inside �. In a strict
procedure, one would have to subdivide the wall at the intersection with the #anks of �, but
such a &&dynamical'' de"nition of walls would produce much computational work. It is
su$cient, within the frame of precision of room acoustical computations, to check whether
the wall section inside � exceeds some size limit (e.g., �

�
); if not, that wall is neglected for

that MS. It is a good compromise between precision and amount of computation to check
whether the centre C of= is inside �. This check is done by a repeated test whether C is
inside the walls of the polygonal pyramid subtended by= and with the MS at its apex. The
repetition can be interrupted if C is outside one of the pyramid walls.

In general, MS with increasing order are displaced farther and farther away from the
interior of the considered room. Thus their "eld angles become smaller and smaller; so fewer
walls have to be considered for the production of further MS. This elementary fact cuts
down the feared tree-like branching of MS production.

The mentioned additional condition that either P or another wall must be in the "eld
angle on the interior side of the generating wall is important, as can be seen from Figure 3.

In Figure 3 the sourceQ creates at=
�
an MS S

�
, which in the shown case is outside both

walls=
�
,=

�
. The inside criterion would interrupt a further production of MS anyhow. If,

however,Q is displaced farther away from the wall=
�
, then S

�
may fall on the interior side

of=
�
. Nevertheless S

�
will not produce an MS at=

�
, because=

�
would be in � but not

on the interior side of the generating wall =
�
.

The additional condition (=
�

inside=
�
) is relevant only for convex corners.
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8. A FEW EXAMPLES OF MS-PRODUCTION

We consider in the examples only couples of intercepting walls forming a space wedge. If
the wedge angle � of a couple of walls is a rational multiple of �, the MS beginning with
some higher order will fall upon positions of MS of lower orders. The concave rectangular
wedge is liked as an example (Figure 4).

The outer sides of the (possibly extended) walls are greyed. The chain of the
MS-production ends in Figure 4 with S

�
, S



, because both MS are outside both walls. The

source factors of both MS S
�
, S



are equal. The question arises as to whether both

coincident MS S
�
, S



should be counted, or only one of it (see below).

Figure 5 shows a convex rectangular corner.
Only one MS can be constructed at the convex rectangular corner of Figure 5. That is

evidently not enough to represent the sound "eld at such a corner. Consequently, the
traditional MS-method fails at convex corners !

In the example of Figure 6 the MS-production ends with S
�
, S

�
, because both MS are

outside both walls.



MIRROR SOURCE METHOD IN ROOM ACOUSTICS 881
Depending on the wedge angle � and on the position of Q, di!erent numbers of MS can
be constructed (higher for small �, in"nitely high for parallel walls with a part of the room
between the walls, i.e., for �"0 ).

9. COMPUTATIONAL PARTS OF THE MS-METHOD

The traditional MS-method consists of three computational parts: "nd the positions of
the MS (considering the inside and "eld angle criteria); determine the source factors of the
MS, i.e., of the re#ection factorsR(�

	
) (depending on the acoustical quality of the mirror wall

and of the relative positions of MS and P); evaluate the contributions of the MS to the "eld
in P.

Most programming is needed for the "nding of the MS positions, although the single
steps are elementary geometrical tasks. Less intensive in programming is the evaluation of
the re#ection factors of absorbent walls. This task will be delegated to subroutines for the
wall surface admittanceG. Most simple is the evaluation of the "eld contributions in P; only
a number of Hankel functions of zero order must be evaluated; this sub-task is
fast-computing for spherical Hankel functions (which are given by cos(x), sin(x)), and is
fast-computing also for cylindrical Hankel functions when using the known polynomial
approximations for Bessel and Neumann functions of zero order.

The traditional MS-method proceeds with the order o of mirror re#ections in the
production of MS of the order o, S(o). At the order o"1 the MS S(1) are determined in turn
for all walls (consider the inside criterion for convex corners!); at the order o"2 all S(1) are
potential mother sources for the generation of the MS of second order S(2) at all walls
(except the wall at which S(1) was produced), unless the inside and "eld angle criteria
exclude S(2); continue until a "nal interrupt criterion is met.

10. INTERRUPT CRITERIA IN THE MS-METHOD

The MS-method is often blamed for its apparent exorbitantly high numbers of involved
mirror sources. In such statements, inherent interrupt criteria of the MS-method are
ignored.

Conditions for the interrupt of the chain of MS-production are as follows.

(1) The source q is outside the mirror wall=: There exists no boundary condition for q at
=; the MS-chain can be interrupted.

(2) A wall= is outside the "eld angle � of q: q does not produce a daughter MS at=. For
walls with a common corner this is equivalent to (1).

(3) An MS would fall into the interior room space: then there would be, except for Q, a new
pole position of the "eld; this o!ends the condition of regularity of the "eld; the MS is
illegal. This case is met with only for convex corners.

(4) If the new MS would fall on Q: from then on the MS positions would be repeated; this
violates the source condition which demands that the volume #ow through a small
enclosure around Q must be the same as of the original source. The MS is illegal.

(5) The product �R, which is the source factor of q, would become ��R�(limit, which is
a pre-set limit. This would make the "eld contribution negligible, also for all daughter
sources of q.

(6) If the sound "eld is the target quantity (not the reverberation time; see below for that),
the distance dist(q, P) of a source q from P may be limited to be (d

���
. For point
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sources the amplitude ratio of q in P, relative to the amplitude of Q in P, is
dist(Q, P)/dist(q, P). This ratio generally becomes even smaller for daughter sources of q.

(7) A limitation ��R �dist(Q, P)/dist(q, P)(limit d
���

would be more signi"cant.
(8) With some arbitrariness one sets an upper limit of the orders o"1, 2, 2, o

���
of the

MS.
The product �

���
R

�
(�

	
) of the re#ection factors R

�
(�

	
) of the orders o form the source

factor of an MS of re#ection order o. It will be symbolized below with �R, or ��R � if the
product of magnitudes of re#ection factors will be used.

In interrupt checks using ��R � it may be su$cient to use for the re#ection factors R (or
their magnitudes �R �) approximate values, for example the re#ection factor for normal
sound incidence or the re#ection coe$cient �R �� from the absorption coe$cient for di!use
sound incidence. Then the construction of the MS becomes independent of the position of
P. The re#ection factors are the only quantities which introduce the frequency into the
construction of the MS . If one takes for the interruption check a lower limit or an average
value of �R � over the considered frequency interval, the construction of the MS is
independent of the frequency also. One should apply tests with the true ��R � in the step of
evaluation of the "eld contributions of the sources, when the �R are available. But then
these tests must be applied on a smaller number of MS than in the phase of
MS-construction.

11. INSIDE CHECK

Checks for interrupt and e$ciency form the main part of the computational work in the
original MS-method. They are fundamental tasks of computational geometry. But because
they are repeated very often, they should compute fast. One can break down all tests to
&&inside checks''. An inside check examines whether a point q is on the interior side of
a plane, in the plane, or on the exterior side of the plane (the sides are de"ned by the
rotational sense of the edges E

�
of a wall="�E

�
, E

�
, E

�
,2�, and they are clear for the

#anks of the pyramid of the "eld angle �). One could do the inside check with the help of
direction cosines of the connecting lines between q and the E

�
. The evaluation of angles,

however, is slow. An equivalent check (in 2-D) uses the vector product of the vectors
(qPE

�
), (qPE

�
):

(qPE
�
)�(qPE

�
) �

'0, left-rotating

"0, collinear

(0, right-rotating� triple(q, E
�
, E

�
). (10)

This check needs two multiplications and one subtraction. A corresponding check in 3-D
uses the vector triple product (scalar product of a vector and a vector product) if the wall is
given by three of its edges. If the parameters of the reduced normal form of the wall equation

ax#by#cz#d"0 (11a)

are known, the inside check needs three multiplications and three additions (see Appendix A)
with q"�x, y, z�:

ax#by#cz#d �
'0, q inside the = plane

"0, q on the = plane

(0, q outside the = plane� , (11b)

if =, q form a right-handed system; otherwise the signs change.
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Another, often used, test examines if a point P is inside the polygonal pyramid which has
the point q as apex and is subtended by a wall=. This test is done by a repetition of inside
checks for P and the triangles forming the sides of the pyramid. The loop over the triangles
can be aborted with a negative answer for the test, if one of the inside checks fails
(distinguish whether= and q are a right-handed or left-handed system).

The shading of a point P or a wall = by a convex corner, and the visibility of P or
= from a point q through an aperture (formed by convex corners with a free interspace
between them) are also tested with inside checks (see later).

12. WHAT IS NEEDED FOR THE TRADITIONAL MS-METHOD

One needs as input: the list of walls �=
�
,=

�
,=

�
,2� which themselves are lists of edges

�E
�
, E

�
, E

�
,2�, E

�
"�x

�
, y

�
, z

�
�; the source point Q"�x

�
, y

�
, z

�
�; the "eld point

P"�x, y, z�; the list of wall admittancesG"�G
�
, G

�
, G

�
,2�; the limits o

���
, limit, d

���
for

the order o, the source factors ��R �, the distances dist(q, P), respectively.
It is supposed that dist(Q, P), the wall centres C

�
, and the parameters a, b, c, d of the

reduced normal forms of the wall equations ax#by#cz#d"0 are evaluated (see
appendix A) before the construction of the MS.

One needs, for the evaluation of the re#ection factors and of the contributions in P:
(1) the position q of a source (either Q or an MS); (2) the counting index w of the wall= at
which q was generated; (3) the distance dist(q, P); (4) the amplitude factor �R(�

	
); (5) a #ag

which signals with -ag"0 that q is an e!ective source, and with -ag"1 that q is
ine!ective.

These data are collected in &&source lists'' �q, w, dist(q, P), �R(�
	
), #ag�, and the source lists

for a given re#ection order o"0, 1, 2,2, o
���

are collected in tables:

tab(o)"�2, �q, w, dist(q, P), �R(�
	
), -ag�,2�.

The counting index of a source list within tab(o) is s. The source table for the order o"0,
i.e., for the original source q"Q, has the form tab(0)"��Q, 0, dist(Q, P), 1, 0�� (for rooms
with concave corners; see below for rooms with convex corners).

One can delegate the task of mirror re#ection of a mother source q
�
, represented by its

source list �q
�
, w

�
, dist(q

�
, P), �

�
R(�

	
), #ag

�
�, at a wall=

�
, given by its index w, including

all tests of interrupt and e!ectivity, into a subroutine, which should be carefully checked and
economized with respect to computing time. That subroutine returns the source list �q, w,
dist(q, P), �R(�

	
), -ag� of the daughter source, if no interrupt criterion is met; the value 0 , if

an interrupt criterion is met.
Such a subroutine for 3-D rooms with concave corners is a program of about 25 program

lines in Mathematica] language (the geometrical sub-tasks inside the subroutine are
delegated to subroutines, in turn).

The original MS-method works in three nested loops: (1) the outer loop over the order
o"1, 2, 2, o

���
and it produces the source table tab(o); (2) the middle loop over the

counting index s"1, 2, 2 of the sources in tab(o}1); (3) the innermost loop over the
counting index w"1, 2, 2 of walls: it calls the above-mentioned subroutine; if that
subroutine does not return 0, the new source list is appended to tab(o).

This original MS-method is attractive by its computational simplicity. A frame program
for the evaluation of tab(o) in Mathematica] typically is a program of about 12 lines, if the
frame program calls a subroutine for the MS-evaluation with all checks inside that
subroutine. It may be of some advantage to perform the checks of legitimacy of a new MS
(mother source inside the mirror wall; mirror wall in the "eld cone of the mother source) in



Figure 7. Wire-plot of the model room.

Figure 8. Outside view of the model room.
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the frame program (this is true especially when the MS-method is applied to rooms with
convex corners; see section 14).

The returned tables tab(o) contain also ine!ective sources ( -ag"1). One can select the
e!ective sources with -ag"0 and collect them in tables called tab

���
(o) . So one has

available all data which are needed to evaluate and sum up the "eld contributions in P of
the e!ective sources.

13. A CONCAVE MODEL ROOM, AS AN EXAMPLE

We consider a 3-D model room which could go as a simple concert hall (see Figures 7 and 8).
It has w"1, 2, 2, 19 walls, two of them (5, 19) are coplanar, and two couples, (2, 6), (4, 8),
have parallel walls on opposite sides of the room. The #oors of the stage and of the seat area
are inclined relative to each other. Balconies cannot be modelled with concave rooms. The



Figure 9. Mirror sources of order o"1, with only back-re#ection criterion. Number of MS: 19.
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sections through the room, from which the geometrical input data were taken, are given in
Appendix B, together with the list of co-ordinate values of the edges, of Q, and P. From
these data the following 3-D plots are computed (such plots are parts of the checks of input
data). Figure 7 shows the room as a 3-D wire-plot, together with the source Q and the "eld
point P. Figure 8 shows an outside view of the room. The co-ordinate units are arbitrary. In
Figure 8 and in later diagrams for the mirror sources, they are scaled down with a factor
1/10.

The normalized wall admittances Z
�
G

�
for the shown example are entered as constant

complex values (see Appendix B). They produce absorption coe$cients �
���

for di!use
sound incidence as given below (see Appendix B for the wall counting index):

�
���

"�0)10, 0)10, 0)40, 0)71, 0)20, 0)60, 0)20, 0)40, 0)20, 0)40, 0)40, 0)20, 0)20, 0)20, 0)20, 0)20,
0)20, 0)20, 0)50�.

The graphs in Figures 9}11 show mirror sources (as points) for some orders o if only
back-re#ection (into the position of the mother source) is avoided. Such diagrams would be
the basis for published numbers of &&needed'' mirror sources.

The next diagrams show the e!ectivemirror sources with all interrupt criteria applied; the
numbers of MS are indicated in the plot label. As criterion for exclusion of a wall as mirror
wall, it was checked whether the wall centre is inside the "eld angle cone of the mother
source. It should be noticed that already for the order o"1 the number of MS is reduced
from 19 to 10 (mainly by the e$ciency check).

The published estimatesN(N}1)��}�� for the needed MS of order o in a room withN walls
would give for the order o"6 (with N"19 for our room), a number 35 901 792 !!

By the way, the computing time for tab
���

(o) up to o"6 was 116 s (on a 400MHz laptop
computer with non-compiled Mathematica] programs).

The strong reduction of the numbers of MS in Figures 12}14, as compared with those in
Figures 9}11, has two reasons: "rst, the application of the inside criterion for sources
relative to the mirror walls and of the inside criterion for walls inside the "eld cone of the
(mother) source; second , the application of the criterion of e$ciency of a source. The
numbers of MS in orders o for di!erent applied criteria are collected in Table 1.

Table 2 collects, in each order o, minimum and maximum reductions in the level of the
sound pressure contribution in P due to ��R �, dist(Q, P)/dist(q, P), and their product.



Figure 10. Mirror sources of order o"2, with only back-re#ection criterion.Number of MS: 342.

Figure 11. Mirror sources of order o"3, with only back-re#ection criterion. Number of MS: 6156.
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The limits were set to � �R �'0)01&}40 dB; dist(q, P)'10dist(Q, P) (corresponding to
!20 dB of the distance ratio); so none of the two limitations restricted the number of
e!ective mirror sources. The table also shows that a limitation of the orders to o)o

���
"6

is reasonable, because the highest contribution of a mirror source for o"6 is !14)53 dB
below the contribution of the original source Q. In addition, the number of e!ective MS
would be further reduced if the product � �R �dist(Q, P)/dist(q, P) (say with a setting to
!40 dB) were used for termination.

As an example of application, we plot the pro"les of the sound pressure level in places
X"(x, y, z

�
) around P"(x

�
, y

�
, z

�
) as 3-D plots of 20 lg�p(X)/p(P) � over k

�
x, k

�
y for two



Figure 12. E!ective mirror sources of order o"1, with all interrupt criteria. Number of MS: 10.

Figure 13. E!ective mirror sources of order o"2 ,with all interrupt criteria. Number of MS: 25.
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frequencies. It is supposed that the distances dist(X, P) are small enough to neglect the
in#uence of variation ofX on R(�

	
). Figure 17 is for a low frequency and Figure 18 for a "ve

times higher frequency; the frequency is determined by the scale factor of the co-ordinates
scal"2�/�

�
(the computing time for a diagram was 16 s; the order limit was o

���
"6;

therefore the number of mirror sources are those of Table 1 and of Figures 12}16).
Figure 17 indicates a standing wave pattern with deep minima mainly in the x direction.

Figure 18 represents a superposition of standing wave patterns in several directions, with
not so deep minima.

Such patterns could not be computed with modi"ed MS-methods using �p
	
(P) � or rays or

sound particles as "eld descriptors.



Figure 14. E!ective mirror sources of order o"3 ,with all interrupt criteria.Number of MS: 42.

TABLE 1

Numbers of MS in several orders o for di+erent interrupt criteria applied

o Back-re#ection Inside q and wall E$ciency

1 19 19 10
2 342 97 25
3 6 256 261 42
4 110 808 478 69
5 1 994 544 755 99
6 35 901 792 1 059 141

TABLE 2

Minimum and maximum reductions in the level of ,eld contributions in the order o by the
source factor �R, the distance ratio dist(Q,P)/dist(q,P), and their product

o ��R� dist(Q,P)/dist(q,P) ��R �dist(Q,P)/dist(q,P)

min max min max min max

1 7)34 0)566 4)69 0)122 7)46 0)948
2 21)05 1)32 10)23 0)331 25)57 4)36
3 22)61 1)69 14)2 4)36 32)29 6)93
4 22)96 3)06 15)91 4)86 36)02 8)89
5 36)21 3)58 18)86 7)34 49)29 12)86
6 37)72 4)19 19)01 8)98 52)91 14)53
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14. THE MS-METHOD IN ROOMS WITH CONVEX CORNERS

As was shown above, the original MS-method fails for the description of the sound "eld
around convex corners (we shall solve this problem below). But one can apply the



Figure 15. E!ective mirror sources of order o"4, with all interrupt criteria. Number of MS: 69.

Figure 16. E!ective mirror sources of order o"6, with all interrupt criteria. Number of MS: 141.
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traditional form of the MS-method in such rooms, if one supposes that the scattered sound
"eld in the shadow zone behind a convex corner can be neglected in comparison with the
contributions of mirror sources which radiate into the shadow zone without scattering at
the convex corner.

Evidently, there are two aspects of this supposition. For explanation, suppose the model
room of the previous section (which has only concave corners) is augmented by an orchestra
pit below the stage with a balustrade between the orchestra pit and the auditorium (as
usual). In the "rst case, let the source be on the stage (as in the previous section); then the



Figure 17. Pro"le of the sound pressure level around P, for a low frequency.

Figure 18. Pro"le of the sound pressure level around P, for a higher frequency.
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orchestra pit is a coupled space which, most probably, does not in#uence very much the
sound "eld in the receiver point P. In the second case, let the source be in the orchestra pit (a
not unusual situation in opera houses2). The interaction of the source with the room for
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Figure 19. Illustration of shading by convex corners.
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a signi"cant part of transmission goes via a scattering either at the corner of the balustrade
or at the corners between the stage and the orchestra pit. It should be clearly stated that this
situation cannot be treated with su$cient precision with the method of this section, which is
based on neglecting the scattering at convex corners. However, the traditional MS-method
with convex corners will be described below just for this situation, as an example, because it
clearly demonstrates the peculiarities of convex corners.

The mentioned supposition introduces the concept of &&shading'' into the MS-method. We
consider the aspects of shading, and anticipate that a distinction must be made between the
cases that the source q was created at the convex corner or not. As an example for sources
q not created at the convex corner, we take the original source Q in the sketches below.

It is an important statement that a convex corner can be treated in the computations like
a concave corner, if the source q &&sees'' both #anks of the corner (from inside), because then
no shadow is created. This condition is easily checked by &&q inside both #anks''. Figure 19
illustrates the case of shading.
=

�
is a wall ending on both sides in convex corners; thus, Q has two shadow angles


 with =. If P is in one of the shadow angles, Q is ine!ective. The two shadow angles

 cover a sub-range of the shade angle � whichQ spans with=. Pwill be shaded relative to
Q if it is inside �. Q creates at the shown walls only one legal daughter source S

�
. Because it

is outside all walls, it will not create further daughter sources.
If the source in Figure 19 is not Q but an MS q

�
created at a wall =

�
(not shown in

Figure 19), the source angle � shown in Figure 19 should not be confused with the "eld
angle �

�
of q

�
(which is subtended by the mother wall =

�
and having q

�
in the apex).

Figure 20 shows a possible situation at a strongly convex corner, in which the legal
daughter source S

�
of Q lies inside the room.

The relations concerningQ in Figure 20 are similar to those in Figure 19 (Q is ine!ective if
the "eld point is in P�). If we consider the mirror source q, it does not produce a daughter
source at=

�
although it is inside that wall. Now �

�
is the "eld angle of q as de"ned and

used in previous sections. The prescription that q shall not produce a daughter source at
=

�
is covered, when we expand the condition for walls= at which a source q can produce

a daughter source (= is inside �
�
) by the additional requirement, that = is inside the

mother wall (here =
�
) of q. With that expanded rule, q can legally produce a daughter

source at =
�
.

The convex corner of Figure 20 is treated like a concave corner, if the source is in the
range indicated with &&no shadow''. This &&no shadow'' range gets larger for &&mildly convex''
corners. Thus, the sound "eld evaluated in a room having only mildly convex corners will
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Figure 20. Shading of a mirror source q by convex corners.

Figure 21 (a) Concept of &&excluded walls'' in rooms with convex corners. (b) 3-D view from inside to the stage
and the orchestra pit of (a).
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not be much di!erent from the "eld in a similar room with only concave corners (as would
be expected).

A further category of interrupts of MS-production is illustrated with a vertical section
through a stage with an orchestra pit below it (see Figures 21(a, b), which are taken from the
model room of the next section).

The walls (14,15) in Figure 21(a) form the balustrade with a convex corner. The wall
couples (9,10), (10,11), (14,15) form convex corners. The walls (1,6), (6,9), (6,13), (8,14), (10,14),
(11,13), (12,14) are parallel to each other in the usual sense, that they include a part of the
room between them (mathematically they are anti-parallel, i.e., their normal vectors have
opposite directions).

One must distinguish between (mathematically) parallel walls, which have parallel
normal vectors, and anti-parallel walls, with parallel normal vectors, but of opposite
directions. Coplanar parallel walls may appear also in concave rooms, where they are
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Figure 22. Shading by apertures.
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treated correctly by the criterion that a mirror wall must be inside the "eld angle cone of the
mother source. In rooms with convex corners, parallel walls may have an o!set relative to
each other (such as (1,9), (1,13), (6,11), (8,10), (8,12), (9,13), (10,12), (10,15) in Figure 21(a)).
Because scattering into the shadow zone of a convex corner is excluded by supposition, the
sound "eld in front of one wall of such couples does not in#uence the boundary condition at
the other wall. We shall speak of &&excluded''walls, or of &&exclusive'' couples, to indicate that
an MS created at one wall of the couple cannot produce a daughter MS at the other wall.
Some of the excluded walls in the above example would be &&caught'' by the criterion that
a mother source must be inside a mirror wall and that the mirror wall must be inside the
"eld angle cone of the mother source on the interior side of the mother wall. But the couple
(8,10), for example, might escape such tests.

The computationally most complicated modi"cation of the MS-method in rooms with
convex corners comes from the problem of &&visibility'' (of the "eld point P or of possible
mirror walls) in such rooms, especially if they have more than just one convex corner.
The problem is illustrated in Figure 22, which is a repetition of Figure 21(a), but now with
the source Q and one of its mirror sources S indicated.

The source Q (and similarly S) &&sees'' the point P or a mirror wall only if they are inside
the angle �

�
, which is formed by a polygonal pyramid with Q in the apex and subtended by

the &&aperture area'' A, which, in the shown situation, spans between the convex corners of
the top of the balustrade and the lower corner of the stage ramp (grey line in the sketch). In
most cases, it will be necessary to determine the edges of the aperture A &&manually''. One
can attribute to A an interior side and an exterior side by the sequence of its edges (for
example, the normal unit vector of A shows in the upward direction of Figure 22). The
original sourceQ on one side ofA gives a "eld contribution inP on the other side ofA (i.e., is
e!ective) only if P is inside �

�
. Similarly, Q will create a mirror source with a wall on the

other side of A only if the wall is inside �
�
. The same statements hold for mirror sources

S created at walls (e.g., 11, 12, 13, 14) on one side of A. These rules hold also inversely (i.e., in
Figure 22 if Q is above A and P below, or for mirror sources created at walls above A and
interactions with walls below A). The position of A depends on the position of the source
q (e.g., for the MS produced by Q at wall 14, one corner of A is the upper corner of the stage
head). It may be doubted if such &&dynamical'' determination of A and re-grouping of walls
in subgroups &&above'' and &&below'' A does pay, on the background of the rather coarse
approximation which we describe here.
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Figure 23. Cases of visibility of a wall = through an aperture A.
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The &&inside check'' for P inside the cone(q, A) is simple; see section 11. In concave rooms,
we have similarly tested if a mirror wall is inside the "eld angle � of a source by checking
whether the wall centre is inside �. This kind of check for the visibility of a wall= using its
centre C for the check would be too rough; important sound paths from one sub-space (e.g.,
the orchestra pit) to the other sub-space (e.g., the stage or the auditorium) could be missed
with that kind of test.

The source q and the aperture A produce a &&bright patch'' F in the plane of an opposite
wall= (F is the polygon formed in the plane of= by the intersection pointsX

�
of the side

corners of the cone(q,A) with the plane of=; they can be evaluated). Three cases of visibility
should be distinguished; they are shown in Figures 23(a}c).

One could describe the condition of visibility by the requirement that at least one edge of
F is within= or at least one edge of= is within F. The implementation of this test would
need the evaluation of the intersection pointsX

�
and the test if a &&point is within a polygon''

(which should not be confused with a &&point is inside the polygon plane''). One can avoid
these (computer-intensive) sub-tasks by using the cone(q, =). Then the visibility check
reduces to the tests &&at least one edge of A inside the cone(q,=)'' or &&at least one edge of
= inside the cone(q, A)''.

The MS-method in rooms with convex corners (in the supposed approximation which
neglects corner scattering) has the same aim as in concave rooms, namely to "nd source lists
�q, w, dist(q,P), �R, -ag� for legal sources q. As in section 12 the frame program operates in
three nested loops over the order o, the counting index s of the sources in the order o}1, the
counting index w of the walls. Because of the many decisions which must be made by the
frame program, anyhow, it is advisable to write a sub-routine for the mirror source
evaluation, which is applicable for #anks of concave and convex corners, i.e., which
internally only makes interrupt checks related to ��R� and to dist(q,P) and e$ciency tests
for the new MS, whereas the frame program performs all interrupt tests. One can
summarize the modi"cations of the MS-method in rooms with convex corners as follows.

(1) Find the lists of wall couples forming convex corners and of exclusive couples.
(2) Determine the aperture A (if any).
(3) An e$ciency check must be performed already for the order o"0, i.e., for q"Q. (Q is

ine!ective, if P is on the other side of A, but not in �
�
of Q; or, for a single convex corner

when A is not de"ned, if P is in the shade angle �
�

(a pyramid with Q in the apex and
subtended by a wall = which is a #ank of the convex corner).) Therefore, determine
tab(0) in the frame program.



Figure 24. 3-D wire plot of the room, showing the positions of the source Q and of the "eld point P.
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(4) The source lists of the order o"1 (i.e., with Q as mother source) must also be deter-
mined separately in the frame program (because Q has no mother wall).

(5) For orders o'1, the frame program in its innermost loop over the wall indices w has to
check the interrupt conditions: w"w

�
, the index of the mother wall; the mother source

q
�

outside the wall with=(w); �w, w
�
� or �w

�
, w� belong to the list of excluded couples;

for walls w, w
�

on the same side of A, if the centre of the wall w is outside the cone(q
�
,

=(w
�
)); for walls w, w

�
on di!erent sides of A, if=(w) is not visible for q

�
through A.

(6) If none of the tests in (5) is positive, the frame program calls a subroutine for the
evaluation of the source list of a new mirror source.

The subroutine causes an interrupt (skip of w), if ��R�(limit or dist(q, P)'d
���

. It
further makes the e$ciency tests. These e$ciency checks should be clear from the
explanations given above.

As compared with the scheme of computation in rooms with only concave corners, the
MS-method in rooms with convex corners has much more checks to be performed;
consequently, the number of e!ective mirror sources will be smaller than in a concave room
with the same number of walls.

15. A MODEL ROOM WITH CONVEX CORNERS

The model room of this section widely corresponds to the model room in section 13 , but
an orchestra pit is added below the stage (the cut drawings and the data of the room are
contained in Appendix B). Figures 21(a, b) show parts of the room. A 3-D wire-plot of the
walls (unscaled) is contained in Figure 24, and 3-D view from outside is shown in Figure 25
(scaled with the factor 1/10 as in the subsequent diagrams with mirror sources). The original
source Q is placed in the orchestra pit; the receiving point P has its former position. The
number of walls of the room is n

�
"29. There are three important convex corners: the

upper corner of the balustrade at the orchestra pit, and the upper and lower corners of the
head of the stage #oor.

Table 3 gives the numbers of legal and e!ective mirror sources in the orders
o"1, 2, 2, o

���
"6.



Figure 25. 3-D view of the room of Figure 24 from outside, with scaled co-ordinates.

TABLE 3

Number of legal and e+ective MS in the orders o"1, 2,2, 6

Type o"1 o"2 o"3 o"4 o"5 o"6

Legal 24 109 286 637 1 306 2 467
E!ective 0 19 44 96 186 272
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All MS of the order o"1 are ine!ective, like the original source Q. The total number of
e!ective sources is 617 up to o"6; the predicted number in [4] would be (with n

�
"29)

1#

�
�

���

n
�
(n

�
!1)�����"517 585 882.

Figures 26}29 show legal and e!ective MS in 3-D plots for some orders o (legal "rst, then
e!ective, except for o"1 where no e!ective MS exists).

Table 4 gives the lowest values for the source factor ��R� (in dB) and the lowest and
highest values of the product ��R�dist(Q,P)/dist(q/P) (in dB) within the orders.

The table shows that, when using the product ��R� dist(Q,P)/dist(q/P) as interrupt
criterion, some MS in the orders o"5, 6 could be dropped, but the last row shows that the
order o

���
"6 may not be high enough.

Again, we plot the sound pressure level pro"le around P (see the explanation to
Figures 17 and 18 for the assumptions made) and refer the level to the sound pressure which
the free source Q would produce in P. Figure 30 is for a higher frequency:
20�g �p (X)/pQ(P)�, with a scale factor scal"�

�
.

The contributions of the higher order MS (the orders o"0, 1 are missing) lift the sound
pressure level in the room signi"cantly over the level in free space.

16. ADVANTAGES AND DISADVANTAGES OF THE TRADITIONAL MS-METHOD

Up to now we have described the fundamentals and application of what we call the
&&traditional MS-method''. With this section the modi"cation of that method will be



Figure 26. Legal MS for o"1.
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prepared. But the previous sections should not be misunderstood to be just an introduction
(which as such surely would be too long2). It is a subject in itself to free the MS-method of
its negative image as being inapplicable in realistic tasks, and some of the problems
appearing below can only be understood with a detailed knowledge of the traditional
MS-method.

This aspect can be up-valued by recalling the well-known problems in the standardized
measurement of the sound absorption coe$cient �

���
for &&di!use'' sound incidence in

a reverberant room; the results of measurements with the same test absorbers in di!erent
rooms by experience di!er by large factors. Reverberant rooms are simple, at least if there
are no &&di!users'' in the room; the room is concave with typically 6}10 constructional walls,
plus one &&wall'' for the test object. Di!users in the shape of plane panels distributed over the
volume could also be introduced in the MS-method; di!users in the shape of wall bosses are
treated with the MS-method for rooms with convex walls. The MS-method in its described
implementation returns the (complex !) sound pressure distribution at the absorber surface,
and with an easy modi"cation also the normal particle velocity. Thus, the absorbed sound
power can be evaluated. Two comments may be appropriate in this context. First, one
cannot sum up the contributions of the individual sources to the absorbed power; this
would be possible only if the sound waves from di!erent sources would be incoherent to
each other. But all sources are &&driven'' by the same signal generator. Therefore, one must
determine the absorbed sound power as mentioned above. Second, the traditional
MS-method cannot explain the so-called &&border e!ect'' of "nite-size absorber patches. The
border lines of the test absorber (even when the absorber is #ush with the #oor) are wall
corners at the limit to convex corners. Edge scattering within the MS-method needs the
modi"cation of that method which will be described below. But the MS-method could be
used to investigate the roles of the room shape and of the source, receiver, absorber
positions on the absorption coe$cient.

The advantages of the traditional MS-method are its analytical and, to some degree, its
algorithmic simplicity. There are some disadvantages on the other hand.

The "rst of them may be considered as a matter of taste. The MS-method resembles
a trial-and-error method by its many checks and rejections of potential mirror sources. It



Figure 27. (a) Legal MS for o"2. (b) E!ective MS for o"2.
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would be an advantage to introduce &&larger units'' of sources which can be analytically
determined.

The second disadvantage lies in the fact that the MS-method can di!erentiate between
more or less important mirror sources only at the end of the procedure when the e!ective
MS are constructed. The traditional MS-method proceeds with the order o of re#ection,
and for every order checks each wall for a possible e!ective daughter source. If one
computes up to an upper limit o

���
, at some corners (with not very small wedge angle �)



Figure 28. (a) Legal MS for o"3. (b) E!ective MS for o"3.
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unnecessarily many candidates for a legal MS are tested, while for other wall couples
(especially anti-parallel walls) possibly important mirror sources are missed by the stop at
o

���
. The basic idea of a modi"cation lies in the question as to whether it is possible to

group the mirror sources di!erently, so that the members of a group can be determined
more easily, and that the groups contain the more important mirror sources. This problem
will be the subject of section 18.

The third fundamental disadvantage was mentioned already; it is the inability of the
traditional MS-method to scope with scattering at convex corners. This problem will be
solved within the frame of a modi"ed MS-method in a later section. Before that we describe
a kind of reciprocity which is useful in many instances.



Figure 29. (a) Legal MS for o"5. (b) E!ective MS for o"5.

TABLE 4

¸evel changes of contributions in the order o

¸evel change by o"2 o"3 o"4 o"5 o"6

� �R�, min }4)38 }19)02 }23)81 }31)05 }34)59
� �R�dist(Q,P)/dist(q/P), min }12)37 }25)17 }30)88 }37)89 }47)13
��R�dist(Q,P)/dist(q/P), max !3)37 !4)22 !3)38 !4)25 !6)98
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17. A KIND OF RECIPROCITY IN THE MS-METHOD

Evidently, a source q, generated by a mother source q
�

at a mirror wall=, will produce in
a receiver point P the same contribution p(P), which the mother source q

�
would produce in



Figure 30. Sound pressure level pro"le around the point P of immission.
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the point P�, which is the mirror-re#ected point to P with respect to=, after multiplication
with R(�

	
).

So one could set up a &&mirror-receiver-method'' instead of a &&mirror-source-method'' by
remoulding all interrupt and e$ciency rules. Numerically, there would be no advantage as
compared with the MS-method for isotropic sources Q. If, however, the original source
Q has a directivity D(�, �), the mirror-receiver-method avoids the mirror re#ection of the
directivity.

In connection with isotropic sources Q, the mentioned rule of reciprocity may facilitate
some argumentation and solution of geometrical sub-tasks. One case of that kind is the
model for &&switch-o! '' of a steady sound "eld in the context with the reverberation time in
a later section.

18. COLLECTION OF THE MS FOR WALL COUPLES

This section prepares all following modi"cations of the MS-method. It is based on the
easily proven fact that the original source Q and all mirror sources which are created by it
and its daughter sources at a couple of walls are arranged on a circle (&&MS-circle'') which
containsQ and has its centre in the foot pointZ of Q (normal projection) on the intersection
line of the walls. So we are dealing with #anks of a corner; the corner is &&real'' if the #anks
are intercepting, or the corner is &&virtual'' if other walls are arranged between the #anks. The
corners (either real or virtual) may be concave or convex, but for the moment we consider
only concave corners. A special case are anti-parallel #anks; their (necessarily virtual) corner
line is at in"nity; the MS-circle becomes a straight line through Q normal to the #anks.

Because the plane containing the MS-circle is normal to the corner line, we are dealing
with a 2-D problem (a further advantage of grouping the mirror sources in groups of MS at
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wall couples). This is suggesting to discuss the problem in a cylindrical co-ordinate system r,
� centred in Z and with the reference for � preferably (but not necessarily) in one of the
#anks. The radius of the MS-circle will be symbolized by r

�
and the angle for Q with �

�
,

whereas the angle for an MS will be called �
�
. The co-ordinates of the "eld pointP are r, �, �,

where � is the co-ordinate along the corner line, with �"0 for Z, Q, q. The transformation
between the Cartesian co-ordinates x, y, z of the room and the cylindrical co-ordinates r, �,
� of a #ank couple is described in Appendix A.

Figure 31 shows a couple of #anks F
�
, F

�
, the original sourceQ and its mirror sources on

the MS-circle.
Figure 31 shows all legal MS (the number is rather high because the wedge angle � is

small, by intention). The source at 6�!�
�

formally could be mirror-re#ected once again,
but then the daughter source would coincide with the MS at 6�#�

�
with the same source

factor, so by the coincidence criterion this daughter source would be illegal. The indicated
source factors as products ofR

�
,R

�
should not be interpreted too literally; the factors in the

powers of these re#ection factors may contain di!erent angles �
	
.

The MS on both circular arcs �(0 and �'0 have source angles �
�
within the limits

�!�
!

(�
�
"!2s�$�

�

!
(!�; s"0,$1, $2,2) (12)

The mirror sources lastly were generated at F
�

for s(0; they would produce a daughter
source on the lower circular arc with F

�
if that is not excluded by the inside criterion, and

vice versa for s'0.
Range (12) leads to limits for the counter s:
On the upper arc �(0:

0*s�'
1

2�
�$�

�
�

!1� , (13a)
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on the lower arc �'0:

0(s(
�G�

�
2�

. (13b)

The sum of the counters is restricted to

s#�s��(
�
�

!

1

2
. (14)

Thus, the number of MS decreases with increasing �. If �"�, only the MS with n"0 is
legal. Evidently, anti-parallel wall couples with �"0 are a special case, which will be
discussed separately below.

One needs, for the implementation of the MS-method, the distance between q and P, and
the angle �

	
formed by the connection line (q, P) with the normal of the #ank. The distance

between q and P is

dist(q,P)"���#r�#r�
�
!2r r

�
cos(�!�

�
). (15)

The cosine cos(�
	
) is easily evaluated in the Cartesian co-ordinates, but this would need

a co-ordinate transformation for all q. It is better to use the cylindrical co-ordinates of P and
to evaluate cos(�

	
) in that system. This task will be described in Appendix A.

The advantage of the described grouping is evident: one need not "nd the MS by trial and
error, but they are evaluated in a straightforward method, if the #anks have a real corner
(where exclusion by interrupt and e$ciency checks play no role). Further, one is sure to
have covered all MS for a wall couple. The question is, whether one possibly introduces too
many MS if the #anks have a virtual corner. See Figure 32 for that question.

Figure 32 illustrates the case when both #anks F
�
, F

�
are on di!erent sides of the

MS-circle. The MS lastly generated at the outer #ank F
�
never &&see'' the other #ank F

�
, and

the MS lastly generated at F
�

may have F
�

in their "eld angles �, or not.
Conclusion: For #anks with virtual corner the tests &&F

�
in cone(q, F

�
)'' must be made as

interrupt checks; however, there are easy to describe situations in which the number of these
tests can be reduced. Similarly, the e$ciency checks, which ask whether the projection P� of
P into the plane of the MS-circle is in the angle �, not only are simpli"ed because these
checks now are 2-D checks, but conditions which make such checks unnecessary can be
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Figure 33. Mirror sources of a triangular room, collected on MS-circles.
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formulated. The tests &&F
�
in cone(q, F

�
)'' remain 3-D if the #anking walls have a virtual

corner and no intersection with the MS-circle.
The set of mirror sources so constructed (we call it &&corner set'') is &&complete''; the sum of

their contributions to p(P) is a precise "eld description (with the principal limitation of
precision of the MS-method), if only the #anking walls of the couple would exist. We call
their sound "eld the &&corner "eld''. If P lies in between the #anks, it is plausible that this "eld
represents the most important contributions of wall re#ections in P. Further contributions
come from other wall couples and their corner sets if P is in the "eld angle � of those
couples (see below), and by re#ections of the corner set of a wall couple at other walls within
�. The combination of corner sets to the ensemble of mirror sources of a room (&&room set''),
or the completion of corner "elds to the room "eld, will be discussed in the next section.

19. COMBINATION OF CORNER FIELDS TO THE ROOM FIELD

The room may have N walls =. First "nd solutions for corners with couples =
�
, =

�
,

i, j"1, 2, 2, N; iOj; that is N(N}1)/2 combinations (the combination =
�
,=

�
is

equivalent to the combination=
�
,=

�
).

For the preparation of the next idea, we take the most simple examples of 2-D triangular
and rectangular rooms. If the room had a 3-D tetrahedral shape, for example, the main
di!erence would be the inclination of the MS-circles relative to each other (it is simpler to
compute the situation in a 3-D room than to present it in a graph). Below, MS from the
traditionalMS-method are drawn with interrupts according to the inside criterion. This will
be su$cient for the ensuing argumentation.

The MS created at a wall couple are collected on circles. In Figure 33 for the triangular
room three of the MS appear twice (they are marked with a grey "ll); they are the MS of "rst
order. In Figure 34 for the rectangular room the vertical and horizontal lines through
Q represent the limit cases of MS-circles for the two anti-parallel wall couples. In this "gure,
the four MS of "rst order appear three times. Long arrows in the "gures indicate where the



Q

Figure 34. Mirror sources of a rectangular room, collected on MS-circles.
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MS come from. Short arrows indicate at which wall the shown MS should be
mirror-re#ected in the next step of MS-production. These arrows point to opposite walls.

In Figure 33, the original source Q appears three times in the corner sets, and the MS of
"rst order appear two times.

In Figure 34, the original source Q appears four times in the corner sets, and the MS of
"rst order appear three times.

The fact that the MS of a wall couple are placed on a circle around the wall corner with
Q on it, and that the continuation of MS-production would imply opposite walls, suggest
collecting the MS of a wall couple into one equivalent source for the corner "eld. The
following rules are evident from the above discussion: exclude the original source from the
"eld of that source; exclude the MS of "rst order from that source; de"ne the "eld angle � of
the source.

We shall see in the next section that the new source is placed in the foot point Z of Q on
the corner line. The "eld angle � therefore is the angle de"ned by the two #anks and the
corner line as apex line.

20. COLLECTION OF THE MS OF A WALL COUPLE IN A CORNER SOURCE

Up to now the graphs in the previous section indicate nothing more than an involved, but
legitimate procedure of MS-production. The main di!erence to the previous sections is the
kind of grouping of the MS.

Now we take advantage of the fact that the MS of a wall couple are arranged on a circle
around the intersection line (normal to that line) which also contains Q. The intersection
line between the walls must not really exist (see the rectangular room). But "rst we exclude
the special case of parallel walls (it is specially treated below). The radius of the MS-circle is
designated as r

�
.
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The "eld of an MS in P is described by
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with d
��

"dist(q,P). The addition theorem for spherical Bessel functions (see reference
[8, p. 440, equations. (10.1.45), (10.1.46)]) when applied to the above expression leads to
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where j

(x) are spherical Bessel functions of order n, h���


(x) are spherical Hankel functions of

the second kind, P

(x) are Legendre polynomials, and the geometrical quantities are taken

from Figure 35.
The circle in Figure 35 is the MS-circle; q is a source on it with the cylindrical

co-ordinates r
�
, �

�
, �"0; P is the "eld point with the cylindrical co-ordinates r, �, �; P� is the

projection of P on the plane of the MS-circle. The following relations exist between the
geometrical quantities:

d�
��

"r�
�
#r�

�
!2r

�
r
�
cos ,

r�
�
"r�#��, (18)
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��

"d�#��,
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�
r cos (�

�
!�), (19)

from which

cos "

r

r
�

cos (�
�
!�) (20)

follows. The "rst line in equation (18) was used for the addition theorem.



MIRROR SOURCE METHOD IN ROOM ACOUSTICS 907
Summation over the sources on the MS-circle gives, for the "eld contribution in P of
those sources,

p(P)"j�
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) �
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�. (21)

The summation index s can be taken from equation (12), if all sources should be added. As
explained above, it is recommended to avoid the summation over Q and the MS of "rst
order (their "eld contributions will be added to the "eld in their traditional forms); and
illegal or ine$cient sources will also be left out of the summation over s. Equation (21)
represents an important group of mirror sources in an explicit formula. The terms represent
radially standing waves in r

�
if r

�
(r

�
, and outward propagating waves if r

�
'r

�
. The

sound "eld is steady at r
�
"r

�
. The sum satis"es the boundary conditions at the #anks,

Sommerfeld's far"eld condition, the source condition and the edge condition (which
requires that the volume #ow through a small cylinder around a corner or a sphere around
an edge does not exceed the volume #ow through a similar cylinder or sphere, respectively,
around the original source Q; the edge condition mostly is used for the selection of
permitted radial functions, like Sommerfeld's far"eld condition). But equation (21) in
general does not satisfy the wave equation, because the factors �

	
(�

	
) in general are neither

constant nor do they have the form which is required by the wave equation for angular
factors to Bessel functions of the order n. But satisfaction of the wave equation could not be
expected with the MS-method as base for equation (21).

This representation however has a numerical problem: the convergence and the precision
are critical for r

�
"r

�
, i.e., if the "eld point lies on the sphere which has the MS-circle as

equator circle. Physically, the numerical problem comes from the fact that the sphere
surface contains the poles of the sources q. The evaluation of equation (21) at r

�
"r

�
needs

a careful check of the summation limit for n (a detailed discussion of the convergence check
can be found in reference [9]). This problem in general does not appear after
a mirror-re#ection of equation (21) at an opposite wall (see below). One could avoid it by
using at or near r

�
"r

�
the traditional MS-method, but this would need the programming

of both methods. An easier method in the case r
�
"r

�
is the evaluation of equation (21) on

both sides of that limit, at some distance, and then to take the mean value.
The fact that a set of spherical Bessel and Hankel functions with integer orders must be

evaluated makes no problem; the set can be obtained from two start values of the order by
the known recursions of such functions, and also the Legendre polynomials are easily
computed. The radial arguments are constant for all sources on the MS-circle and for
a "xed immission point P.

Important conclusions can be drawn from equation (21). The components of the sum
over n are spherical wave terms, which are centred in the centre Z of the MS-circle on the
corner line. Therefore, we say that equation (21) represents the "eld of a &&corner source''. It
can be introduced into a continued MS-generation like any directional source. The
advantages of the corner source are evident. Its position need not be found in a complicated
search algorithm; it is explicitly de"ned by the room geometry and the position ofQ. Also its
"eld angle � is immediately given, it is the angle between the #anking walls. The di!erence
to the "eld angle � of a traditional MS is remarkable (� is the angle of the cone subtended
by the mother wall and the MS in the apex). E$ciency checks (P in � ?) and interrupt
checks (an opposite wall in � ?) are much easier to perform.

It is not proven, but plausible, that one can stop the "eld evaluation after the corner
sources of all wall couples have been evaluated and mirror-re#ected once at their opposite
(visible) walls. All really important "eld contributions will be obtained with that procedure.
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The mirror re#ection of the corner source is done by a simple modi"cation of equation
(21) if one applies the reciprocity of section 17. One need not evaluate the positions of the
mirror-re#ected sources, but one mirror-re#ects P, multiplies the �R(�

	
) in the sum over

swith the new re#ection factor, and evaluates equation (21) with the geometrical parameters
of the new position of P (which can also be determined directly from the room input data
and the position of P). This procedure avoids the re#ection of the directivity of the corner
source.

21. A NON-HYBRID FORM OF THE CORNER SOURCE

The corner source according to equation (21) may be called a &&hybrid'' source, because,
on the one hand, it is composed of analytical wave terms (in the n-sum), but the
trial-and-error procedure of the MS-method is still contained (in a reduced form) in the
determination of the summation indices s.

Independent solutions for the sound "eld of a (point or line) source in the wedge space
limited by two #anking walls can be derived which also correspond to a corner source, but
now they also obey the wave equation if the walls are hard (or ideally soft), and satisfy the
wave equation with a better approximation than the mirror source solution if the #anks are
absorbent.

Such solutions are described in reference [9] for corners with hard #anking walls, and in
references [10, 11] for corners with absorbent walls. Results of theory shall be repeated
below (for completeness, and in 2-D, for simplicity) for corners with hard #anking walls. The
theory in reference [9] at the same time includes a cylindrical scatterer sitting on the corner.
This case, which may be met with in room acoustics, was mentioned above. It may be of
some interest to see how it can be handled.

The basic idea of such solutions is to expand the sound "eld as sums of &&corner modes'',
which are fundamental solutions of the wave equation and the boundary conditions, and
which are orthogonal over the azimuth � within the wedge angle �. If one expands the
sound "eld of the original source Q in such modes, their sum automatically satis"es the
boundary conditions.

The object, for which the result will be given below, is shown in Figure 36. A corner (not
necessarily convex as shown) with hard walls, forming a wedge angle �, and a cylindrical
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scatterer with radius a is irradiated by a line source Q, parallel to the corner, placed in
(r

�
, �

�
). The total sound "eld p(r, �) is composed of azimuthal modes of the corner problem,

i.e., elementary solutions which satisfy the boundary conditions at the #anks.
Two radial zones must be distinguished: zone (a) with a)r(r

�
, and zone (b) with

r'r
�
.

The "elds of both zones can be formulated as zone (a)
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k is the radial component of the wave number, with k�"k�
�
!k�

�
, and k"k

�
if the axial

wave number k
�
is zero (no "eld variation along z). �


are solutions of the characteristic

equation from the boundary conditions (zero normal particle velocity) at the #anks

(�

�) tan(�


�)"0. (24)

Thus �

"n�/�, n"0, 1, 2,2. (Here again �"0 is a special case). R
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The mode amplitudes A

are determined from the source condition which requires that

the volume #ow of the "eld through a small cylinder around Q is the same as of the original
source Q and which can be formulated as

v

�
(r

�
#0)!v


�
(r

�
!0)

!
"q�(�!�

�
), (26)

where q is the volume #ow ofQ per unit length. With that quantity q for the characterization
of the strength of Q, the free "eld of Q is

p
�
(�)"�



Z

�
k
�
�qH���

�
(k�), (27)

where � is the radius measured from Q. With the synthesis of the Dirac delta function
�(�!�

�
) with angular modes, one gets

A

"

�
4
k
�
r
�

Z
�
q

�N


cos (�

�

�
)"

�
�N



p
�
(0)

H���
�

(kr
�
)
cos (�


�

�
). (28)

There inN

are mode norms with the valuesN


"1 for n"0, andN


"2 for n'0. p

�
(0) is

the value of the source free "eld at the position of the corner.
The sound "eld, which is determined with these results, can be split into two parts: one

part created by the corner (remaining if no scattering cylinder is present), and one part
created by the scattering cylinder, using the factors

C

"

Z
�
GJ�

(ka)#j (k/k
�
)J��

(ka)

Z
�
GH����

(ka)#j(k/k
�
)H�����

(ka)
,

C

&&�
�����

J��
(ka)

H�����
(ka)

, C

&&�
�����

J�
(ka)

H����
(ka)

, C

&&�

����
0, (29)

with the results
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zone (a)
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�
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(kr) cos (�

�), (30)

zone (b)

p
�
(r,�)"p
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�

#p
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�
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H���
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H����
(kr

�
)H����

(kr) cos (�

�). (31)

The splitting of the "eld into the two zones (a), (b) basically corresponds to the application
of the addition theorem for cylindrical functions, used already in section 20; the numerical
di$culties mentioned there for r"r

�
exist here also. They are avoided if the incident "eld

does not come from a line source, but is a plane wave in the direction �
�
. Then zones (a), (b)

no longer must be distinguished, and the total "eld in the wedge is

p(r,�)"p
��
�


#p
�� 

"

2�
�

p
�
(0) �

*�

e�����
N



J�
(kr) cos (�


�

�
) cos (�


�)

!

2�
�

p
�
(0) �

*�

C


e�����
N



H����
(kr) cos (�


�

�
) cos (�


�). (32)

p
�
(0) again is the value of the incident wave at the corner.
Below we shall discuss the special case of parallel walls (as announced above). This would

correspond to �"0. This case evidently is singular, as can be seen from equation (24).
If one compares these results with equation (21) (a comparison between the present 2-D

task and the above 3-D problem is possible, though not in detail, if one substitutes
cylindrical Bessel functions with spherical Bessel functions, and cos(�


�) with P


(cos(�


�))),

one sees that the geometrical sub-tasks in equation (21) (for the determination of r
�
, �, �

�
)

are replaced by the sub-task of the determination of the �

, which, however, is easy.

Paper [11] constructs corner modes in a wedge with absorbent #anks. These modes
satisfy the boundary conditions, but not precisely the wave equation (which recalls the
situation with mirror sources in corners with absorbent #anks). The corner modes need the
solution of a rather complicated characteristic equation for the angular wave numbers, and
the radial functions are hypergeometrical functions (Kummer and Tricomi functions). Most
probably the application of such modes in room acoustics would be too complicated.

Paper [10] therefore applies the third principle of superposition (see below) for the
construction of an approximate solution. The third principle of superposition expresses
the "eld in a wedge with one ideally re#ecting (hard or soft) and one absorbent wall with the
solutions of the two problems in which the absorbent wall is "rst hard (&&hard}hard
problem'' or &&hard}soft problem'') and then soft (&&hard}soft problem'' or &&soft}soft
problem''). The solutions of these sub-problems are either taken directly from above
(hard}hard problem) or after some simple modi"cations.



MIRROR SOURCE METHOD IN ROOM ACOUSTICS 911
However, the presentation of the results of that paper here would lead us too far away
from the present subject, so the reader is referred to the original papers.

22. A &&MIXED''METHOD FOR FIELD EVALUATION IN ROOMS

The fact that the modal synthesis of sound "elds in room wedges (formed by two #anking
walls) is valid both for concave and convex corners suggests a method for the evaluation of
the sound "eld in a point P if both P and Q are positioned in the range of the same room
wedge (especially if P is near the corner line). The modal synthesis delivers precisely the total
sound "eld (i.e., with the contribution of Q included) if the wall couple were alone.

In a realistic room further "eld contributions in P come from mirror re#ections of the
corner source at the opposite walls (which again may be evaluated as the "eld of the corner
source in the mirror-re#ected point P). Under the mentioned conditions for the position of
P one surely can stop the evaluation after one mirror re#ection at all visible opposite walls.
This mixture of modal synthesis and MS-method may be of interest under the mentioned
conditions.

23. LIMIT CASE OF PARALLEL WALLS

Because only anti-parallel walls will be considered here, we shortly speak of &&parallel''
walls. In principle, the number of needed MS for the sound "eld in the space between
parallel walls is in"nitely high (on both sides of the walls). Up to now, we have only an
interrupt criterion if the walls are absorbent due to the reduction of the source factor �R
with increasing order.

In the limit case of parallel walls in equation (21), the limits r, r
�
, r

�
PRand �P0 are

assumed; the MS-circle becomes a straight line normal to the walls.
First we derive with Figure 37 a plausible interrupt criterion for MS-production with

parallel walls by consideration of allowable errors; then we sum up the MS to a single
equivalent source.

The arrows in Figure 37 indicate which couples of sources satisfy the boundary condition
at which wall. If one interrupts one has a couple without &&partner'' for the boundary
condition (this is the lowest couple in the graph). An interrupt makes an error in the
boundary condition at a wall. The absolute error is in the order of magnitude of the "eld
contribution of the uncompensated source couple. It decreases with increasing order of
re#ection: because of the increasing distance of the source couple to the wall (geometrical
reduction); because of the decrease of �R with absorbent walls (acoustical reduction). The
relative error, which is important, further decreases with increasing order, because the
reference quantity is the sum of contributions of &&complete'' couples.

From experiences of "eld evaluations in #at ducts (which is the object at hand) one can
conclude that a relative boundary value error �


� 
+1/10}1/20 is tolerable. Neglecting

geometrical and acoustical reductions, this leads to a permitted interrupt at about
s
!�

"10}20 MS. This will be su$cient if geometrical reduction with increasing order is
taken into account, and if one considers that real walls never are ideally re#ecting.
A re#ection coe$cient �R �"0)9 produces for an order o"15 a source factor of about
0)9��"0)206.

For the summation of contributions of MS at parallel walls, one can again start with
equations (17) and (21), take the "rst term of the asymptotic expansion of spherical Bessel
and Hankel functions because of r

�
, r

�
PR, which introduces products of cosine and

exponential functions, reformulate these products so that only exponential functions with



Q

Figure 37. Interrupt criterion in the case of parallel walls.
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either sums or di!erences of radii appear in the exponent, set exponentials with sums to
zero, because of the small but existing attenuation in air, "nd analytical equivalents for the
sum over Legendre polynomials, and obtain the result that it is reasonable to express the
"eld of a mirror source in P as the "eld of the original source Q with a geometrical factor.

But, knowing this goal it is easier to derive that form of the MS-"eld directly. The
problem is characterized geometrically by the straight line, normal to the #anks F

�
, F

�
,

which contains the original source Q and the MS q, and the "eld point P. We therefore take
a right-handed Cartesian co-ordinate system x�, y�, z� with the y�-axis on the source line, and
the x�-axis in one of the #anks so that P is in the x�, y� plane (it follows from the system x, y, z
of the room by a rotation and shift); see Figure 38.

The source positions are given by x�"0, z�"0 and

x�
�
"(2s#1)H$h, s"0,$1,$2, 2, (33a)

if the co-ordinate origin is chosen on F
�

as in Figure 38, otherwise by

x�
�
"2sH$h, s"0,$1,$2,2. (33b)

The "eld contribution p
�
(P) in P of a source q can be written in terms of the contribution

p
�
(P) of Q as

p
�
(P)"�

�
R(�

	
)
k
�
d

��
k
�
d

��

e���� �������� � p
�
(P), (34)
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Figure 38. Summation of MS-contributions in the case of parallel walls.
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with

d
��

"�(x�
�
!x�

�
)�#(y�

�
!y�

�
)�, d

��
"�(x�

�
!x�

�
)�#(y�

�
!y�

�
)�. (35)

The angles �
	
for the re#ection factors are easily obtained in the x� and y� co-ordinates. The

equivalent source and its contribution representing all mirror sources is given by

p(P)"p
�
(P)�

	

�
�
R(�

	
)
k
�
d

��
k
�
d

��

e������������ �. (36)

For the combination with corner sources of non-parallel wall couples, it is again
recommended to let the original source and the MS of "rst order out of the summation over
s. For the mirror re#ection of this source at an opposite wall use the reciprocity, i.e.,
determine the position of the re#ected "eld point P� in the co-ordinates x, y�, z�.

If the parallel #anks F
�
, F

�
are not directly opposite to each other, but with a parallel

o!set, interrupt checks for mirror sources are preferably performed in the co-ordinates x�, y�,
z� (skip s for illegal sources in equation (36)), as well as e$ciency checks (skip s for ine$cient
sources). The total source (36) is ine!ective, if P is not in the space between the planes of the
#anks F

�
, F

�
, and the mirror-re#ected combined source is ine!ective if P� is not in that

space. So indeed one has to form two sums (36), one for the &&legal'' equivalent source, which
is used in its mirror re#ection, and one for the "nal evaluation of the "eld contribution. But
the decision if equation (36) must be evaluated at all can be made before any computation.

One still has the problem with convex corners and their scattered "eld. This problem can
be solved rather easily, within the frame of an MS-method, by combination of the
MS-method with the &&second principle of superpositiona (PSP). We begin with the
description of that principle in the next section.

24. THE SECOND PRINCIPLE OF SUPERPOSITION (PSP)

It should be stated in advance: the PSP, when applied to single concave corners, does not
result in signi"cant saving of computation, as compared to the traditional MS-method;
except it is globally applied to symmetrical rooms (see below); but its application is
necessary with convex corners; because it is applicable to both convex and concave corners,
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Figure 39. Application of the second PSP in room acoustics.
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and some of its features are more easily explained with concave corners, these are treated
here also.

One distinguishes three principles of superposition, numbered in the order of their
publication. The "rst principle of superposition reduces the determination of the
characteristic mode propagation constants in ducts with unsymmetrical absorbent linings
to two corresponding tasks with symmetrical linings [12]. The second principle of
superposition, "rst published by Ochmann and Donner [13] in a special application with
silencers and then generalized in reference [14], reduces the evaluation of sound
transmission through objects having a plane of symmetry to two sub-tasks in which the
plane of symmetry is hard or soft respectively. The third principle of superposition gets the
solution of a scattering task at an object with an absorbent surface from the solutions of two
tasks in which that surface is hard and soft respectively [15].

The objects of the second principle of superposition (PSP) are an arbitrary (also
multi-modal) source Q and a scattering object which has a plane of symmetryM. When the
PSP is applied to room edges, the #anking walls are supposed to extend from their line of
intersection to in"nity. If they are absorbent, the absorption should be the same at both
#anks (symmetrical #anks; see below for unsymmetrical #anks). It is not necessary that the
#anking walls of a room have a real line of intersection; they may be couples of walls, with
other walls forming the connection on the apex side.

We suppose equal wall admittance values G
�
at both #anks F

�
. We further suppose

a co-ordinate system with a co-ordinate z (which favourably is an azimuthal co-ordinate)
normal to the median plane M. This assumption is not necessary; it just simpli"es the
description.

The median plane M subdivides the wedge into two halves: (I) on the source side of M;
(II) on the back side of M (as seen from Q).With the choice of z as in Figure 39,
mirror-re#ected points in both halves are distinguished just by $z.

The PSP composes the solution of the original scattering task by the solutions
of two sub-tasks �"h, w of scattering in zone (I): in the "rst sub-task, �"h, the plane of
symmetry M is hard; in the second sub-task, �"w, the plane of symmetry M is
soft.

The "eld of each sub-task is composed by the source "eld p
�

and a scattered "eld p���
	

:
p���"p

�
#p���

	
. The "elds of the original task in both zones (I), (II) then are

p
�
(x, z)"p

�
(x, z)#�

�
(p�!�

	
(x, z)#p���

	
(x, z)),

p
��
(x, z)"�

�
(p�!�

	
(x,!z)!p���

	
(x,!z)) (37a)
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(x represents the co-ordinates other than z). One can decompose the "eld also as
p���"p

�
#p



#p���

	
, where p



shall be the same in both sub-tasks; then one has

p
�
(x, z)"p

�
(x, z)#p



(x, z)#�

�
(p�!�

	
(x, z)#p���

	
(x, z)),

p
��
(x, z)"�

�
(p�!�

	
(x,!z)!p���

	
(x,!z)). (37b)

The scattered "elds here generally are di!erent from those of equation (37a), but in our
problem p



is just a member of the scattered "eld terms (see below) so that these remain

unchanged.
In summary: the PSP solves the scattering task on the source side (I) for the sub-tasks

�"h, w and computes with them the "eld on the back side (II) (just by mirror re#ection at
M). One should keep in mind this &&detour'' of the "eld evaluation in (II) via zone (I).

The derivation of the PSP uses, additionally to the source Q(x, z), sources Q(x, }z) which
are mirror-re#ected at M; in the "rst sub-task the MS has the same amplitude as Q; in the
second sub-task it is multiplied with }1. Equations (37a) just describe the superposition
of both sub-tasks with Q and $MS as sources. The following features should be
observed:

The simplicity of the derivation shows the general validity of the PSP (under the
mentioned condition of symmetry of the object).

The PSP is an exact description if the scattered "elds of the sub-tasks can be determined
exactly.

The PSP o!ers itself for a combination with the MS-method!
If, in the course of the PSP, mirror sources are created atM (to satisfy there the boundary

conditions), one should remember that mirror sources at ideally re#ecting planes give an
exact description of the "eld. With absorbing #anks, the errors of the MS-method remain.

The "elds of the mirror sources S
�
form the &&scattered "elds''.

If S
�
was created by mirror re#ection at F

�
on the source side, the sign of the MS is the

same in both sub-tasks; this will be indicated in the sketches below with (#).
If S

�
is created by mirror re#ection at M, the sign of S

�
is di!erent in both sub-tasks; this

will be marked in the sketches with ($), i.e., (#) for �"h, (!) for �"w. If an MS which
was created atM (i.e., marked with ($)) afterwards is re#ected at F

�
, the double sign ($)

remains.
The resulting "elds of the PSP are:

p
�
(x, z)"Q#�

� ��
�

S �!�
�

(x, z)#�
�

S���
�

(x, z)�,
p
��
(x, z)"�

���
�

S �!�
�

(x,!z)!�
�

S ���
�

(x,!z)�. (38a)

The change hPw of the median planeM does not in#uence the position and number of the
MS; therefore the sums have the same counting and summation index i.

If the "rst MS is created at F
�
(on the source side), it has in both sub-tasks the same sign

(it will be indicated with S
�
). It can be pulled in p

�
(x, z) outside the parentheses and needs no

superscript (h) or (w). The remaining MS under the sums (with superscripts) have undergone
at least one mirror re#ection at M. So one can write

p
�
(x, z)"Q#S

�
(x, z)#�

���
�

S �!�
�

(x, z)#�
�

S ���
�

(x, z)�,
p
��
(x, z)"�

���
�

S �!�
�

(x,!z)!�
�

S ���
�

(x,!z)�. (38b)
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We have encountered a special treatment of the MS of "rst order S
�

at F
�

already in other
contexts.

One must distinguish with the production of MS in the PSP:
(1) &&Mirror re#ected 2'' (a) at the wall F

�
; then the sign is the same as for the mother

source, but if F
�

is absorbent, a re#ection factor R arises; (b) at M; then the sign in the
sub-task h is that of the mother source, in the sub-task w the sign is changed; i.e., the new
factor in the source factor �R is R"$1.

(2) Two sub-tasks*(a) �"h: no sign change at mirror re#ections; (b) �"w: sign change
for mirror re#ections at M (but not at F

�
).

(3) Two &&paths'' of MS-production*(a) "rst path: begins with mirror-re#ection
at F

�
; MS on this path will be designated with even indices i"0, 2, 4,2; (b) second

path: begins with mirror re#ection at M; MS on this path will have odd indices
i"1, 3, 5,2.

Whereas the sub-tasks h, w do not change the position of an MS of some order, the
positions of the MS of both paths are generally di!erent from each other.

As a detailed example, we take the concave rectangular edge; see Figure 40.
In Figure 40 MS-production is continued (irrespective of the inside criterion) until the

MS begin to fall on positions of formerly created MS. The paths from then on would begin
to be continued backwards (with multiple covering of the positions).

The following schemes represent the chains with multiple re#ections at F
�

and M for
both paths. Mirror re#ection at F

�
is marked by a simple arrowPand re#ection at M by

a double arrowN. The cases �"h are arranged in the upper line, and �"w in the lower
line. MS in vertical columns of the scheme have equal positions. The #anking wall F

�
"rst is

supposed to be hard.
In the schemes below, the sums appearing in the PSP (for one path; recall that

MS in a column of the scheme have equal positions) under the symbols of the MS are
written:

� S" �
�*�

S �!�
�

#S ���
�

in zone (I),

�S" �
�*�

S�!�
�

!S ���
�

in zone (II).
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First path:

Q
h

Pw S
�

h[
Ww

#S
�
P#S
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��
,
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��
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, (39a)

Second path:

Q
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�
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�
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��
,
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�

2S
��

. (39b)

If one sums up the MS of both paths, the PSP gives

p
�
(x, z)"Q(x, z)#S

�
(x, z)# �

��	 �	 �2



�

���

S

��

(x, z),

p
��
(x, z)" �

��	 �	 
2



�

���

S

��

(x,!z). (40)

Now we complete the scheme for the case of (symmetrical) absorption at the walls. The
re#ection factors R

�
in an order of MS are not changed by hPw, except the sign.

First path:
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�
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�
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S
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R



S



0 0, (41)

Second path:

Q
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�
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�
S
�
P#R

�
R

�
S
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�
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�
S
�
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S
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�

!S���
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S
�
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�
R

�
S
�
. (42)

25. SOME EXAMPLES FOR THE MS AND PSP-METHOD

The most important advantage of the combination MS and PSP is the fact that with it
convex corners become tractable; the traditional MS-method there fails completely.
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Because the wedge angle of a couple of walls always is �)2�, the angle between F and
M always is )�; zone (I) in which the scattered "eld has to be determined is concave; the
MS-method there can be applied.

In concave corners the application of the PSP possibly produces a higher precision
because the MS have new positions. But this should be checked.

The following sketches mainly suppose hard #anks (for simplicity reasons); absorbing
#anks are specially mentioned.

A very simple, but instructive, example is the case of a source Q above a plane wall; see
Figure 41.

The MS are shown in Figure 41 until interruption by the inside criterion. There is
coincidence of S

�
, S

�
(with the same source factor R for absorbent F

�
, F

�
).

It is an important question if such coinciding MS have to be counted a multiple number
of times or if the MS-production is interrupted when coincidence begins. S

�
, S

�
,

S
�

compensate each other in the sum �S of p
���
. The "eld in (I) is built up by Q, S

�
, as

expected. In the di!erence �S of p
����

the contributions of S
�
, S

�
, S

�
would sum up, if the MS

would be used as drawn. As a consequence, the "eld would be unsteady at M.
Consequently, coincidence of MS with the same source factor �R should be avoided!

Taking this interrupt criterion into account, the "eld is correctly given by the MS and
PSP-method. This method thus has a further interrupt criterion, as compared with the
traditional MS-method.

The example of Figure 41 also illustrates well the procedure in the MS and PSP-method
for the evaluation in zone (II): One "rst evaluates with the signi"cant MS the scattered "eld
in zone (I), and then mirror-re#ects that "eld at M into zone (II).

Another instructive example is the concave, rectangular edge; see Figure 42.
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Figure 43. A concave rectangular corner with the source Q approaching a #ank.
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Figure 44. A concave rectangular corner with the source Q approaching the median plane M.
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The MS are drawn in Figure 42 as far as it is permitted by the inside and coincidence
criteria. (a further re#ection of S

�
at F

�
, which would be permitted by the inside criterion,

would produce coincidence with S
�
).

According to equation (40), the "eld p
�
(x, z) is created by the superposition of the "elds of

Q, S
�
, S

�
, S

�
, and the "eld p

��
(x,!z) by the mirror sources S

�
, S

�
, S

�
, S



. The boundary

conditions at the #anks F
�
, F

�
evidently are satis"ed. Because both groups of MS can be

transformed into each other by a rotation with �/4 and a mirror re#ection, the "eld is also
steady at M; thus it is a solution of the task.

A special case which can be easily understood is obtained if the source Q approaches the
#ank F

�
. With a hard #ank F

�
again the case of a source above a hard wall F

�
is achieved;

see Figure 43.
The e!ective source in Figure 43 is a double source Q#S

�
. As expected, the "eld is

symmetrical relative to F
�

and F
�
. It is also steady at M. The "eld is completely and

precisely represented.
In a further limit case, Q approaches the median plane M; the "eld again is rightly

represented as can be seen from Figure 44.
The MS in Figure 44 again are drawn according to the inside and coincidence criteria.

The source Q and the MS marked with (#) determine the "eld in (I); the MS marked with
($) compose ("rst in (I)) to the "eld in (II). The boundary conditions at F

�
, F

�
and

condition of steadiness at M are satis"ed.
The presented examples again illustrate the importance of the determination of p

��
via the

detour over zone (I). The examples contain MS with ($) in (II). Without the detour, this
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Figure 45. PSP in the case of parallel walls.
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would mean poles of the "eld in (II). This must be excluded according to the condition of
regularity of the scattered "eld.

A further example are parallel walls, i.e., the case of a #at duct; see Figure 45.
In the example of Figure 45 the chains of possible MS on both sides are arbitrarily

interrupted. The chains would go to in"nity with hard walls. The absorption of walls would
produce some amplitude reduction with increasing order. This example will be used below
to "nd interrupt criteria for chains of MS which, in principle, are in"nitely long.

Belowwe also show some (computed) examples of MS in edges with no simple ratio of the
wedge angle � to �. The walls =

�
, =

�
are described by couples of end lines K

��
. The

(dashed) median plane M always shows to the interior side of the room. The co-ordinates
x, ymay be arbitrarily normalized. The original source Q again is indicated by a black disc.
The MS have no (literal) names. The used symbols for the MS suppose that they are shown
for the sub-task �"w, i.e., in the mirror re#ection atM the source factor is multiplied with
R"!1. When the resulting source factor is �R'0, the MS will be drawn with a # sign;
when �R(0 with a�(a minus sign would not permit to see coincidence of sources).
Irrespective of inside and coincidence criteria the MS in Figure 46 are continued until
o

���
"18.

The following examples (Figures 47}50) consider the inside and coincidence criteria. The
resulting upper limits of the order on the two paths 1, 2 are indicated as o1, o2,2 . The
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Figure 47. MS-method and SPP with interrupt:=1"��2, 2�, �0, 2��,=2"��0, 2�, �!1, 0)5��, Q"�1, 1)75�,
o1"3, o2"3.
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diagrams should be read as follows:
� Contributions to the "eld p

�
in zone (I), containing the source Q, are made (besides Q) by

those MS (in a direct sum, i.e., without sum factor 1/2) which are marked with #.
� The "eld in zone (II) is composed of contributions of the MS which are marked with �.
More important than the examples of concave edges, shown up to now, are convex edges.
The next example introduces the limit case of a semi-in"nite thin screen.

In the limit case of a screen, the MS with # coincides with the upper MS with �, and the
lower MS with�coincides with Q. But there it would produce a pole in zone (II);
consequently, it is dropped. Consideration of the "eld angles of the MS with #, from which
the lower MS with�was created by mirror re#ection atM, leads to the same result, because
the "eld angle does not include M. Also, the inside criterion permits only two MS with
# and � in the mirror point to Q. The "eld in (I) is produced by Q and its MS at F

�
(i.e.,

with source factorR for an absorbent #ank), and the "eld in (II) is produced by one MS with
a source factorR"1 in the mirror point to Q (via "eld determination in (I) !). The limit case
of a thin screen thus is described only with errors which, however, are in the order of
magnitude of the errors of the traditional MS-method with absorbing #anks. This error can
be checked against an independent evaluation of the sound "eld around screens (see below).

26. THE PSP FOR UNSYMMETRICAL ABSORPTION

The condition of symmetrical absorption for the application of the PSP to sound "elds
between couples of walls is a sensible restriction in applications. It will be tried, therefore, to
resolve that restriction, if necessary by an approximation, which, however, should not
introduce errors exceeding the errors of the traditional MS-method with absorbing walls.

First, we repeat the fundamental form of the PSP:

p
�
(x, z)"p

�
(x, z)#�

�
(p�!�

	
(x, z)#p���

	
(x, z)),

p
��
(x, z)"�

�
(p�!�

	
(x,!z)!p���

	
(x,!z)). (43a)

If the scattered "elds p
	
are produced by MS, it reads

p
�
(x, z)"Q#�

���
�

S�!�
�

(x, z)#�
�

S���
�

(x, z)�,
p
��
(x, z)"�

���
�

S�!�
�
(x,!z)!�

�

S���
�

(x,!z)�. (43b)

If the #anks have equal absorption, the MS contain source factors formed by products of
re#ection factors, which themselves are evaluated from the admittance of the #ank F

�
.
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As was shown, the production of MS follows two paths: the "rst path begins with the
mirror re#ection at the real #ank F

�
on the source side and produces in the "rst step the

mirror source S
�
(in both sub-tasks �"h, w); the other path begins with a mirror re#ection

at the median plane M.
If the #anks are symmetrical, the "eld in the sub-task �"h is symmetrical with respect to

M (i.e., M is hard); in the sub-task �"w the "eld is antisymmetrical (i.e., M is soft).
Symmetry and antisymmetry of the "elds are solely determined by the source Q and the
auxiliary sources of the PSP . If the walls are di!erent, an antisymmetrical part of the "eld
will arise due to the asymmetry of the walls.

26.1. A FIRST APPROXIMATION FOR DIFFERENTLY ABSORBING WALLS

It is always possible to compose an unsymmetrical "eld p(x, z) in two geometrically equal
halves (I) and (II) of a wedge with symmetrical and antisymmetrical "eld components:

p(x, z)"p�	��(x, z)#p��	�(x, z),

p�	��(x,!z)"p�	��(x, z), p��	�(x,!z)"!p��	�(x, z). (44)

Whence follows

p�	��(x, z)"�
�
(p(x, z)#p(x,!z)), p��	�(x, z)"�

�
(p(x, z)!p(x,!z)). (45)

M by de"nition is hard for the part p�	�� and soft for the part p��	�. Therefore, these parts have
a common characteristic with p�!�

	
, p���

	
of the PSP with symmetrical #anks.

Further, the "eld p(x, z) shall satisfy the boundary conditions at the #anks F
�
, F

�
:

p(F
�
)"p�	��(F

�
)#p��	�(F

�
)

!
"v

�
(F

�
)/G

�
,

p(F
�
)"p�	��(F

�
)!p��	�(F

�
)

!
"v

�
(F

�
)/G

�
. (46)

In these boundary conditions, the parts p�	��, p��	� appear in the same combination as p�!�
	

, p���
	

in the PSP. Thus, from formal considerations one arrives at an approximation for the PSP
when applied to walls with di!erent absorption.

Complete the PSP for acoustically di!erent walls as follows.
� Apply in equation (43) for the evaluation of the "eld p

���
in zone (I) the sum

p
�"�

(x, z)"Q#�
���

�

p�!�
		�

(x, z)#�
�

p���
		�

(x, z)�,
using for the re#ection factors the admittance of the #ank F

�
;

� apply in equation (43) for the evaluation of the "eld p
����

in zone (II) the di!erence

p
�""�

(x, z)"�
���

�

p�!�
		�

(x,!z)!�
�

p���
		�

(x,!z)�,
using for the re#ection factors the admittance of the #ank F

�
.

This rule creates a "eld which satis"es the wave equation in the approximation of the
MS-method for absorbent walls, satis"es the source condition, and satis"es the boundary
conditions at F

�
, F

�
.

The question is whether the "eld is steady at M.
IfR

�
is used in the sum and di!erence, the solution of the symmetrical problem withR

�
is

obtained. If Q is displaced into its mirror-re#ected position, and the substitution F
�
PF

�
is

supposed, then the solution of the symmetrical problem with R
�

is obtained. Both are
steady at M, however with generally di!erent values p(M) due to the di!erence of R

�
, R

�
.
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The rule above takes from the symmetrical problems with R
�
, R

�
, the parts in zones (I) and

(II), respectively. The approximation produces in general a step of p(x, z) at M.
It is an important question as to whether this jump is tolerable in the frame of precision of

the MS-method with absorption. The "eld jump at M is of the order of magnitude of the
di!erence of the re#ection factors R

�
, R

�
. In the extreme case of one hard wall with R

�
"1

and an absorbing opposed wall, one can consider the problem as the sub-task for zone (I) of
a symmetrical PSP-problem. The traditional MS-method produces "eld jumps of about the
same height for absorbing walls if one crosses the #anks of the "eld angles.

If the "eld point P is on the median plane M, one will take the average of both values
according to the above rule of approximation.

26.2. A MORE PRECISE APPROXIMATION FOR DIFFERENTLY ABSORBING WALLS

We de"ne

G���"G
�
#G

�
, G���"G

�
!G

�
. (47)

Choose the numbering so that Re�G����*0. It follows that

G
�
"�

�
(G���#G���), G

�
"�

�
(G���!G���). (48)

Solve the scattering task (43) with the PSP for both symmetrical cases with G�	�, �"1, 2.
This gives

p�	�
�

(x, z)"p
�
(x, z)#�

�
(p�!		�

	
(x, z)#p��		�

	
(x, z)),

p�	�
��
(x, z)"�

�
(p�!		�

	
(x,!z)!p��		�

	
(x,!z)),

�"1, 2.
(49)

In the case G
�
"G

�
the object to �"2 is an edge with hard walls. Then the following

procedure is not necessary because the normal PSP is applicable!
Below, we consider only particle velocities normal to the #anks or to the median planeM.

Note the change of sign at the velocities in zone (II) (as a consequence of a subsequent
mirror re#ection):

v�	�
�
(x, z)"v

�
(x, z)#�

�
(v�!		�

	
(x, z)#v��		�

	
(x, z)),

v�	�
��
(x, z)"!�

�
(v�!		�

	
(x,!z)!v��		�

	
(x,!z)). (50)

The boundary conditions of both symmetrical tasks �"1, 2 at the #ank F
�

are

v�	�
�

(F
�
)"G�	�p�	�

�
(F

�
). (51a)

The boundary conditions at the #ank F
�
are formulated via

v�	�
��
(F

�
)"G�	�p�	�

��
(F

�
) (51b)

and subsequent mirror re#ection

!v�	�
��

(F
�
)"G�	�p�	�

��
(F

�
). (51c)

These boundary conditions are satis"ed by the PSP-method for both cases �"1, 2. If one
inserts p

�
, p

��
in their forms of the PSP, one gets

v
�
(F

�
)#�

�
(v�!		�

	
(F

�
)#v��		�

	
(F

�
))"G�	�[p

�
(F

�
)#�

�
(p�!		�

	
(F

�
)#p��		�

	
(F

�
))],

!�
�
(v�!		�

	
(F

�
)!v��		�

	
(F

�
))"G�	�[�

�
(p�!		�

	
(F

�
)!p��		�

	
(F

�
))]. (52)
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They can be applied to evaluate the particle velocities v��		�
	

(F
�
); �"h, w; �"1, 2; i"1, 2;

from the scattering pressures p��		�
	

(F
�
) (we shall not use these forms for our further

derivation).
The sound pressure "eld of the unsymmetrical original task is formulated as

p(x, z)"p
�
(x, z)#p

	#
(x, z) (53)

by the free"eld p
�

of the source Q and a scattered "eld p
	#
. The boundary conditions in the

unsymmetrical wedge at both #anks F
�
, F

�
are:

v
�
(F

�
)#v

	#
(F

�
)"G

�
[p

�
(F

�
)#p

	#
(F

�
)],

!(v
�
(F

�
)#v

	#
(F

�
))"G

�
[p

�
(F

�
)#p

	#
(F

�
)]. (54)

Here the sign change in the second line considers the agreement that the particle velocities
at both walls shall be directed into the walls, but in both lines they are components in the
#z-direction.

The boundary conditions are linear operators. Therefore, a representation of p(x,z) can be
tried as a linear combination of the solutions of the symmetrical PSP:

in (I):

p
�
(x, z)#p

	#
(x, z)"Ap���

�
(x, z)#Bp���

�
(x, z), (55)

in (II):

p
�
(x, z)#p

	#
(x, z)"ap���

��
(x, z)#bp���

��
(x, z). (56)

With this formulation, the boundary conditions of the original task become

v
�
(F

�
)#v

	#
(F

�
)"Av���

�
(F

�
)#Bv���

�
(F

�
)

"
!
G

�
[p

�
(F

�
)#p

	#
(F

�
)]"G

�
[Ap���

"
(F

�
)#Bp���

�
(F

�
)], (57a)

v
�
(F

�
)#v

	#
(F

�
)"av���

��
(F

�
)#bv���

��
(F

�
)"!av���

��
(F

�
)!bv���

��
(F

�
)

"
!

!G
�
[p

�
(F

�
)#p

	#
(F

�
)]"!G

�
[ap���

��
(F

�
)#bp���

��
(F

�
)]. (57b)

Division with A or a gives for the ratios B/A and b/a with equations (51a) and (47)

B/A"!

G
�
p���
�

(F
�
)!v���

�
(F

�
)

G
�
p���
�

(F
�
)!v���

�
(F

�
)
"

p���
�

(F
�
)

p���
�

(F
�
)
, (58)

and with equations (51b) and (47)

b/a"!

G
�
p���
��

(F
�
)!v���

��
(F

�
)

G
�
p���
��

(F
�
)!v���

��
(F

�
)
"

G
�

2G
�
!G

�

p���
��

(F
�
)

p���
��

(F
�
)
"

G���#G���

G���!3G���

p���
��

(F
�
)

p���
��

(F
�
)
. (59a)

In the case of symmetrical walls with G���"0 it would follow that

b/a&&�
�����

!

p���
��

(F
�
)

p���
��

(F
�
)
. (59b)

As an intermediate result one gets with equations (55) and (56)
in (I):

p
�
(x, z)#p

	#
(x, z)"A�p����

(x, z)#
p���
�

(F
�
)

p���
�

(F
�
)
p���
�

(x, z)�, (60)
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Figure 51. Combination of a corner source with the PSP.
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in (II):

p
�
(x, z)#p

	#
(x, z)"a�p�����

(x, z)#
G

�
2G

�
!G

�

p���
��

(F
�
)

p���
��

(F
�
)
p���
��

(x, z)�, (61)

If z"0 , i.e. for points onM, one has p�	�
�

(M)Pp�	�
��

(M); at the same time the left-hand sides
of equations (60) and (61) become equal. This leads to

a

A
"

p���
�

(M)#(p���
�

(F
�
)/p���

�
(F

�
))p���

�
(M)

p���
��

(M)#(G
�
/(2G

�
!G

�
))(p���

��
(F

�
)/p���

��
(F

�
))p���

��
(M)

. (62)

Up to now the right-hand sides of equations (55) and (56) are determined up to a common
factor A. This factor "nally follows from the source condition in (I) , i.e., from equation (60):

p
�
(Q)"A�1#

p���
�

(F
�
)

p���
�

(F
�
)�p�

(Q), A"

p���
�

(F
�
)

p���
�

(F
�
)#p���

�
(F

�
)
. (63)

The result of this procedure solves the boundary conditions at the #anks, and it is steady at
M, and it satis"es the source condition. The sound "eld in a wedge with di!erently
absorbent walls is determined with the precision with which the two symmetrical scattering
tasks are solved.

However, the procedure has some computational disadvantages.
One needs the solutions p�	�

�
, p�	�

��
at the #anks and the median plane with precise source

factors �R of the involved MS. They can hardly be substituted by approximate values, as it
was possible for the interrupt criterion.

The "eld evaluation is split into the evaluations of four sub-tasks. The amount of
programming may become prohibitively large.

Therefore one generally will apply the simpler rule of the previous section.
There is still one question open which shall be illustrated with Figure 51. The question is

how the evaluation with the PSP for convex corners is combined with the corner source
from wall couples. This question arises if one (or both) #ank(s) of the wall couple end in
a convex corner. As Figure 51 shows, the median planeM of that corner is a visible opposite
wall to the corner source. So, either for the original sourceQ in the wedge of the wall couple
(as shown in Figure 51), or for the corner source, the problem of scattering at the convex
corner can be treated with the MS and PSP-method.
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27. A GLOBAL APPLICATION OF THE PSP

Most auditoria have a constructional plane of symmetry M. So the room as a total
satis"es the condition for the application of the PSP.

This means that one solves the task of "eld evaluation twice in the half of the room
containing the source Q: onceM is supposed to be hard and onceM is supposed to be soft.

The computational advantage can be easily quanti"ed in 2-D (similar relations hold in
3-D). The room is supposed to have N walls. In the sub-tasks of the PSP will appear the
following numbers of walls (M included): N/2#2 walls, if M on both sides ends on walls;
(N!1)/2#2 walls ifM ends on one side with a wall and on the other side in a corner;N/2
walls, if M ends on both sides in corners.

A reduction of the e!ective wall number begins (in the least favourable "rst case) with
N"6. For a relatively simple room geometry with N"20, the e!ective wall number has
reduced to 12. Since in the estimations of the needed MS for the traditional MS-method the
wall number appears as base with the order as exponent, the computational advantage
would be signi"cant.

With this remark ends that part of the present paper which is concerned with the
evaluation of the stationary sound "eld in rooms. It should be noticed that the described
methods yield complex sound pressures inP. The computations will be somewhat simpli"ed
if one is satis"ed with the magnitudes �p

�
� of the contributions of the e!ective sources (MS

and corner sources). This is mostly done in room acoustical papers, although it is impossible
to conclude from �p

�
� to �p(P)� (the magnitude of a sum mostly is di!erent from the sum of

magnitudes2).
We shall encounter that di!erence in the next section which deals with the determination

of the room reverberation using the results of the "eld evaluation. Although reverberation is
an instationary process, it should be possible to evaluate the most important room
acoustical quali"er, the reverberation time, from the results of a computational "eld model.
In doing that, one will be confronted with some lack of de"nition of reverberation in usual
descriptions.

28. REVERBERATION TIME WITH RESULTS OF THE MS-METHOD

The method described above delivers the stationary, monochromatic "eld of a stationary,
harmonic source in a room. It returns the complex sound pressure p(P) in a pointP, i.e., with
magnitude and phase.

The most important room acoustical quali"er is the reverberation time; it is described in
the literature (more or less) by &&The reverberation time is the elapsed time for a decay of the
sound pressure level of 60 dB after termination of a stationary sound excitation.''

It is tacitly understood that &&sound pressure''means the magnitude of the sound pressure,
and in most experimental determinations of the reverberation time band noise is used with
an average over the bandwidth. It is not mentioned (but it is important as we shall see
below) that the recti"cation of the received signal (for the magnitude and band average)
implies averaging over time intervals.

The reverberation process is instationary; our "eld evaluation is for stationary "elds.
Therefore, one needs a &&switch-o!model'' for the evaluations. It should be reminded in that
context, that the sound "eld in the room is created in the MS-method (as well as in the
modi"ed MS and PSP-method) by equivalent sources, which means that, after
the equivalent sources have been installed in the right places and with the right amplitudes,
the walls of the room can be taken away. The equivalent sources radiate into the free space.
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One can imagine the distributed sources as a network of loudspeakers driven by the same
signal generator. The network lines contain attenuators which model the source factors �R.
If the signal generator is switched o!, all loudspeakers are switched o! instantly, but the
sound waves radiated before switch-o! still propagate. This model has the advantage that
the boundary conditions at the walls are satis"ed in every moment, because as long as
a sound wave from a source hits a wall, the sound wave from its daughter source with that
wall will also be present.

It may be mentioned that a di!erent switch-o!model can be designed which makes use of
the above-mentioned reciprocity of the MS-method, i.e., which uses the &&mirror-receiver
model''. In this model, microphones at the distributed receiver positions add their signals
via attenuators (which again introduce the source factors �R). In this model only one
loudspeaker, of the original source Q, must be switched o!. But it is not so evident that the
boundary conditions are satis"ed every time. It is interesting to note that
the implementation of this switch-o!model produces a reverberation which corresponds to
the method of the &&integrated impulse response''. Below we shall use only the
above-mentioned model with the loudspeaker network.

The end of the contribution of a source q arrives in P after a time t after switch-o!

t"
dist(q,P)

c
�

"

k
�
dist(q,P)

�
, �"2�/¹

�
,

t

¹
�

"

k
�
dist(q,P)

2�
. (64)

Therein ¹
�

is the time period of the sound wave. It is reasonable to measure t in units of
periods ¹

�
.

Imagine all evaluated MS (and their "eld contributions p
	
(P)) sorted with increasing

k
�
dist(q,P) and indexed in this order with a number s (s"0 may represent the original

sourceQ). After some elapsed time t/¹
�
, those contributions will be summed in P, which are

still travelling from their source to P. The decay curve ¸(P) in P expressed as sound pressure
level therefore is

¸(t/¹
�
)"10 lg 	 �

����	����	�	��*����$�

p
	
(P) 	

�
. (65)

With increasing t/¹
�

the summation is performed over smaller and smaller remainders of
the set of e!ective MS. This evaluation therefore will produce a steeper slope of ¸(t/¹

�
) at

the end of a time interval of observation when this end approaches fewer and fewer
remaining MS. This increase in slope must not be confused with the slope produced by the
decreasing amplitudes of MS with increasing distance (due to geometrical and/or acoustical
reduction), but is a consequence of the "nite size of the set of MS.

Equation (65) is a direct transcription of the reverberation process de"ned above verbally.
Formation of magnitude and square is applied on the sum of contributions. Instead of
proceeding on the t/¹

�
-axis in unit steps of s, one can proceed in steps �t/¹

�
. Contributions

within the interval �t/¹
�

are summed up (linearly!).
When applying equation (65) to 2-D rooms, curves of ¸(t/¹

�
) are obtained which disagree

with all expectations which one has for a reverberation curve. The reason for the
discrepancy is the fact that in room acoustics, and therefore also in the de"nition of the
reverberation time, magnitudes of the received signal, time-averaged over a time interval,
are summed up (see e.g. reference [16, pp. 79, 96]). One also "nds the reverberation de"ned
as the &&decay of the average energy density''. The (e!ective) energy density implies the
square of the sound pressure; averaging is performed over directions of the sound intensity
and time intervals which are short compared with the reverberation time. Because tacitly
the contributions of di!erent sources are supposed to be incoherent also, the contributions



Figure 52. Sound pressure level of the contributions of MS in P, sorted after their travel distances.
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of sources to the energy density can be added and they are proportional to the magnitude
squared of their contributions p

�
(P) to the sound pressure p(P):

E
�
(P)"

1

2 �
�
c�
�

�p
�
(P) ��. (66)

This de"nition leads to a reverberation curve

¸(t/¹
�
)"10 lg�

1

2�
�
c�
�

�
n'(t/¹

�
)/(�t/¹

�
)

1

�s
�

����	����	�	��$�����$�

�p(s)�� � . (67)

The outer sum indicates summation in steps of time intervals �t/¹
�
in which �s sources

are found, and this outer summation includes a decreasing number n of such steps. The
interior sum forms a squared average (with the factor 1/�s) of the contributions in a time
interval (this summation is skipped if �s"0).

29. A ROOM WITH CONCAVE EDGES AS EXAMPLE

We take the room of section 13 as a model room, with the same positions of the source
Q and the receiver P as there. The evaluation of the mirror sources is performed for orders
up to o

���
"8. The lower limit of ��R� was set to limit"0)01; the upper limit for the

distances was with d
���

"100dist(Q,P) set so high that it did not exclude a legal source.
This produces 837 e!ective sources; the computing time for the determination of source
positions and source factors was 320 s.

Figure 52 shows over k
�
r, with r"dist(q,P), the sound pressure levels p

�
(P) of the

contributions in P, relative to the contribution p
�
(P) of the original source Q. The cloud of

points has a typical triangular shape: the upper border has an about constant slope after
a somewhat steeper slope for smaller k

�
r. The lower border lines are not so well de"ned,

because there the points are disperse. The upwards going lower border line towards the
right predominantly is determined by the termination with o

���
. One can expect that the

upper border line has some similarity with the reverberation curve.
The evaluation of equation (65) returns the reverberation curves of Figures 53(a}c) which

di!er from each other only in the value used for the time interval �t/¹
�
.

Larger time intervals �t/¹
�

smoothen the curves, but they do not produce a similarity
with a usual reverberation curve, when summation over complex sound pressure
contributions is applied with magnitude squaring of the sum.



Figure 53. (a) Summation of complex contributions, with time interval �t/¹
�
"1. (b). Summation of complex

contributions, with time interval �t/¹
�
"2. (c). Summation of complex contributions, with time interval

�t/¹
�
"4.

Figure 54. Reverberation curves with equation (67), for di!erent values �t/¹
�
"1, 2, 4 (from high to low).
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Figure 54 combines results of the evaluation of equation (67), again for di!erent time
intervals �t/¹

�
(within which now an averaging of squared magnitudes takes place); the

values of the curves from high to low are �t/¹
�

"1, 2, 4. The points represent centres of
the time intervals. The constant factor 1/(�

�
c�
�
) is omitted.

Except for the steep ends of the curves, which come from the termination of the
MS-evaluation with o

���
, as explained above, the curves now represent usual reverberation

curves. They have a steeper &&early reverberation'' and not so steep &&late reverberation''. The
choice of �t/¹

�
may in#uence to some degree the value of the reverberation time obtained

from such curves, for example as the coe$cient of a linear regression through the points
within a given interval of observation for t/¹

�
. Figure 55 combines the points of the



Figure 55. Combination of points from Figure 54, for �t/¹
�
"1 with a linear regression curve.
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reverberation curve for �t/¹
�
"1 with the linear regression within the interval

20)t/¹
�
)50. The reverberation time ¹



in units of ¹

�
is ¹



/¹

�
"67)46.

30. SUMMARY

� One aim of the present paper was to free the MS-method from the horror visions of
abundantly high numbers of needed mirror sources, by use of inherent interrupt criteria.

� Further, the nevertheless high number of needed mirror sources in the traditional MS-
method is further reduced by the introduction of corner sources, which represent the
sound "eld in corner areas between couples of walls.

� These corner sources can easily be mirror-re#ected at opposite walls.
� The importance given to the corner areas brings the main part of evaluation from 3-D

down to 2-D evaluations.
� The interrupt criteria restrict the number of mirror sources needed in a corner to low

values, in most cases; and the corner sources as elementary units contain the most
important "eld components for any "eld point P.

� Therefore, it can be expected that the source construction can be terminated after the "rst
mirror re#ection of the corner sources at opposite walls.

� The case of parallel walls is a special case of a wall couple. An easy-to-compute
approximation is derived for this special case.

� The principal problem which the traditional MS-method has with convex corners is
resolved with the help of a principle of superposition (PSP).

� The condition of symmetrical walls for the principle of superposition when applied to
convex corners would be a severe restriction for applications in room acoustics.
Approximations to the PSP are derived for unsymmetrical walls of a corner.

One must not compute everything anew if the frequency and/or the receiver position
change. The source positions depend only on the relative positions of the original source
and the walls. Preliminary checks of interrupt due to small source factors and/or to large
distances can be made with some constant values of the re#ection coe$cients and a distance
to the centre of the range in which the receiver point will change. One can "nd all needed
information for the "nal evaluation of the re#ection factors R(�

	
) with a new frequency

and/or receiver position if one supplements the source lists in tab(o) with the counting index
s
�

for the position of the list of the mother source in the table tab(o}1).
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If new assumptions are made for approximations, other than the inherent approximation
of the traditional MS-method with absorbent walls, care was taken that the new errors of
approximation remain in the frame of the errors of the original MS-method.

The MS-method, in its traditional and in the modi"ed form, originally delivers complex
sound pressures in a "eld point. Room acoustics often deals with sound pressure
magnitudes. Then some simpli"cations can be applied to the MS-method. The di!erence
between the squared magnitude of a sum of contributions and the sum of squared
magnitudes of contributions is an important distinction in relation to the evaluation of the
reverberation from numerical results of a room model and MS-method.
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APPENDIX A: GEOMETRICAL SUB-TASKS

A 3-D, right-handed Cartesian co-ordinate system x, y, z is supposed. Points, lines, planes
will be considered in 3-D. Corresponding relations in 2-D are obtained either by setting one
co-ordinate on a zero value, identically, or by easy direct derivations. Walls are de"ned by
a list of subsequent edge points; the sequence of the edges in the list is so that they de"ne
a rotation which with the direction towards the interior of the room form a right-handed
system. Mostly not the polygon of a wall is considered below, but the plane which contains
the wall.

1. Distance d between two points P
�
(x

�
, y

�
, z

�
), P

�
(x

�
, y

�
, z

�
):

dPP"�(x
�
!x

�
)�#(y

�
!y

�
)�#(z

�
!z

�
)�. (A.1)
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Figure A1. The direction angles �, �, � of an oriented line ¸ are the angles between the axes and the line.
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2. Direction cosines of the line from P
�
(x

�
, y

�
, z

�
) to P

�
(x

�
, y

�
, z

�
):

cos �"

x
�
!x

�
dPP

, cos�"

y
�
!y

�
dPP

, cos �"

z
�
!z

�
dPP

. (A.2)

3. Cosine of the angle � between two lines: The directions of the lines given by their direction
angles �

�
�

�
�
�
,

cos�"cos �
�
cos �

�
#cos�

�
cos�

�
#cos �

�
cos �

�
. (A.3)

4. Normal form Ax#By#Cz#D"0 of a plane: The plane is given by three points P
�
,

P
�
, P

�
on it. A possible form of the plane equation (coming of a zero value of the vector

triple product of the vectors (P, P
�
), (P

�
, P

�
), (P

�
, P)) is

	
x!x

�
y!y

�
z!z

�
x
�
!x

�
y
�
!y

�
z
�
!z

�
x
�
!x

�
y
�
!y

�
z
�
!z

�
	"0. (A.4)

whence follow the parameters A, B, C, D:

A"y
�
(z

�
!z

�
)#y

�
(z

�
!z

�
)#y

�
(z

�
!z

�
),

B"!x
�
(z

�
!z

�
)!x

�
(z

�
!z

�
)!x

�
(z

�
!z

�
),

C"x
�
(y

�
!y

�
)#x

�
(y

�
!y

�
)#x

�
(y

�
!y

�
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D"x
�
(y

�
z
�
!y

�
z
�
)#y

�
(x

�
z
�
!x

�
z
�
)#z

�
(x

�
y
�
!x

�
y
�
). (A.5)

5. Reduced normal form ax#by#cz#d"0 of a plane:

a"
A

�A�#B�#C�
, b"

B

�A�#B�#C�
, c"

C

�A�#B�#C�
, d"

D

�A�#B�#C�
.

(A.6)

This reduced normal form should not be confused with Hesse's normal form:

a�x#b�y#c�z!p"0,

a�"
A

$�A�#B�#C�
, b�"

B

$�A�#B�#C�
, c�"

C

$�A�#B�#C�
,

p"
D

$�A�#B�#C�
*0, (A.7)
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where the sign of the root is taken so that p is positive. This additionoal convention in
Hesse's normal form makes it unsuited for inside checks.

The parameters a, b, c of the reduced normal form are the direction cosines cos �,
cos�, cos � of the normal vector on the plane (pointing to the interior side).
6. Foot point P"(x, y, z) of a point P

�
"(x

�
, y

�
, z

�
) on a plane: The &&foot point'' P is the

projection of P
�
on the plane. The plane is given by the parameters of its reduced normal

form:

x"(b�#c�)x
�
!a (d#by

�
#cz

�
),

y"(a�#c�)y
�
!b (d#a x

�
#cz

�
),

z"(a�#b�)z
�
!c(d#ax

�
#by

�
). (A.8)

7. Mirror point P"(x, y, z) of a point P
�
"(x

�
, y

�
, z

�
) at a plane:

Let P
%

be the foot point of P
�

on the plane. Then P"2P
%
}P

�
. (A.9)

8. Direction cosines of intersection line of two planes: Let the planes =
�
be given by the

parameters a
�
, b

�
, c

�
, d

�
of their reduced normal forms:
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a
�

b
�

a
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b
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�"���
�
#��

�
#��

�
. (A.10)

The rotation=
�
P=

�
and the direction of the intersection line form a right-handed

system.
9. Point of intersection X"(x, y, z) of a line through two points P

�
"(x

�
, y

�
, z

�
) with a plane:

Let the plane = be given by the parameters a, b, c, d of its reduced normal form:

x"!d(x
�
!x

�
)#b(x

�
y
�
!x

�
y
�
)#c(x

�
z
�
!x

�
z
�
)/xx,

y"!d(y
�
!y

�
)#a(x

�
y
�
!x

�
y
�
)#c(y

�
z
�
!y

�
z
�
)/xx,

z"!d(z
�
!z

�
)#a(x

�
z
�
!x

�
z
�
)#b(y

�
z
�
!y

�
z
�
)/xx,

xx"a(x
�
!x

�
)#b(y

�
!y

�
)#c(z

�
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�
). (A.11)

10. Foot point P"(x, y, z) of a point P
�
"(x

�
, y

�
, z

�
) on the intersection line of two planes

=
�
, =

�
:

Let the planes =
�
be given by the parameters a

�
, b

�
, c

�
, d

�
of their reduced normal

forms:
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with � and �
�
from equations (A.10).

11. Bisectrice plane between two intersecting planes=
�
,=

�
: Let the planes=

�
be given by

the parameters a
�
, b

�
, c

�
, d

�
of their reduced normal forms. The parameters of the
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Figure A2. x�, y�, z� is a right-handed system, like x, y, z. The rotation F
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bisectrice plane (containing the intersection line) are

a"(a
�
#�a

�
), b"(b

�
#�b

�
), c"(c

�
#�c

�
), d"(d

�
#�d

�
), (A.13)

with �"$1.
12. ¹wo planes parallel or anti-parallel: Parallel: the three parameters a, b, c of the reduced

normal form are pairwise equal; anti-parallel: two of the parameters are pairwise equal,
the other di!ers in sign.

13. Distance between two anti-parallel planes: Let the planes=
�
be given by the prameters a

�
,

b
�
, c

�
, d

�
of their reduced normal forms. Distance �:

�"�d
�
!d

�
�. (A.14)

14. Inside check of a point P"(x, y, z) relative to a plane given by three points P
�
"(x

�
, y

�
, z

�
):

The check is performed with and returns

sign 	
x!x

�
y!y

�
z!z

�
x!x

�
y!y

�
z!z

�
x!x

�
y!y

�
z!z

�
	"�

#1

0

!1

if P is inside =

if P is on =

if P is outside =� , (A.15)

where �2 � indicates a determinant, and sign(x) checks the sign of x.
15. Inside check of a point P"(x, y, z) relative to a plane given by its reduced normal form

parameters: The check is performed with and returns

sign(ax#by#cz#d)"�
#1

0

!1

if P is inside =

if P is on =

if P is outside =� . (A.16)

16. Co-ordinate transformation: The system x, y, z is rotated and shifted as shown in the
graph of Figure A2. The new axis z�"� in the applications is the intersection line of two
planes F

�
, F

�
; the new origin Z is the foot point of the original source Q on the

intersection line.

The transformation x, y, zPx�, y�, z� is done by

�
x�

y�

z��"�
cos �

�
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�
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�
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�
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�
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�
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�
cos �
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cos �

�
�"�

x!x
�

y!y
�

z!z
�
� . (A.17)
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The inverse transformation x�, y�, z�Px, y, z is done (with the transposed matrix) by

�
x

y

z�"�
cos �

�
cos �

�
cos �

�
cos�

�
cos�

�
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�
cos �
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cos �
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�
� �
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y�

z��#�
x

�
y

�
z

�
�. (A.18)

APPENDIX B: INPUT DATA OF THE MODEL ROOMS

B.1. CONCAVE ROOM

The vertical and the horizontal cuts through the room in Figure B1 show the counting
numbers of the walls and their form and arrangement, as well as the positions of the original
source Q and receiver point P. The co-ordinates indicated in the horizontal cut are
arbitrary; normally, they will be scaled in the MS-computations. The table below gives the
values of the edge co-ordinates.

walls "���!100)0, 0)0, 25)0�, �100)0, 0)0, 25)0�, �200)0, 100)0, 0)0�, �!200)0, 100)0, 0)0��,
��!200)0, 100)0, 0)0�, �200)0, 100)0, 0)0�, �250)0, 150)0, 0)0�, �!250)0, 150)0, 0)0��,
��!250)0, 150)0, 0)0�, �250)0, 150)0, 0)0�, �150)0, 600)0, 75)0�, �!150)0, 600)0, 75)0��,
��!150)0, 600)0, 75)0�, �150)0, 600)0, 75)0�, �150)0, 600)0, 162)5�, �125)0, 600)0, 175)0�,
�!125)0, 600)0, 175)0�, �!150)0, 600)0, 162)5�, �!150)0, 600)0, 75)0��,
��125)0, 150)0, 225)0�, �!125)0, 150)0, 225)0�, �!125)0, 375)0, 200)0�,

�125)0, 375)0, 200)0��,
��125)0, 100)0, 225)0�, �!125)0, 100)0, 225)0�, �!125)0, 150)0, 225)0�,

�125)0, 150)0, 225)0��,
��100)0, 0)0, 175)0�, �!100)0, 0)0, 175)0�, �!125)0, 100)0, 225)0�, �125)0, 100)0, 225)0��,
��100)0, 0)0, 25)0�, �!100)0, 0)0, 25)0�, �!100)0, 0)0, 175)0�, �100)0, 0)0, 175)0��,
��100)0, 0)0, 25)0�, �100)0, 0)0, 175)0�, �250)0, 150)0, 175)0�, �250)0, 150)0, 0)0�,

�200)0, 100)0, 0)0��,
��250)0, 150)0, 0)0�, �250)0, 150)0, 175)0�, �150)0, 600)0, 162)5�, �150)0, 600)0, 75)0��,
��!150)0, 600)0, 75)0�, �!150)0, 600)0, 162)5�, �!250)0, 150)0, 175)0�,

�!250)0, 150)0, 0)0��,
��!100)0, 0)0, 25)0�, �!200)0, 100)0, 0)0�, �!250)0, 150)0, 0)0�, �!250)0, 150)0, 175)0�,

�!100)0, 0)0, 175)0��,
��!100)0, 0)0, 175)0�, �!250)0, 150)0, 175)0�, �!125)0, 100)0, 225)0��,
��!125)0, 100)0, 225)0�, �!250)0, 150)0, 175)0�, �!125)0, 150)0, 225)0��,
��!125)0, 150)0, 225)0�, �!250)0, 150)0, 175)0�, �!150)0, 600)0, 162)5�,

�!125)0, 600)0, 175)0��,
��250)0, 150)0, 175)0�, �125)0, 150)0, 225)0�, �125)0, 600)0, 175)0�, �150)0, 600)0, 162)5��,
��250)0, 150)0, 175)0�, �125)0, 100)0, 225)0�, �125)0, 150)0, 225)0��,
��250)0, 150)0, 175)0�, �100)0, 0)0, 175)0�, �125)0, 100)0, 225)0��,
��125)0, 375)0, 200)0�, �!125)0, 375)0, 200)0�, �!125)0, 600)0, 175)0�,

�125)0, 600)0, 175)0���.

The co-ordinates of the original source Q and receiver point P are:

Q"�!75)0, 50)0, 30)0�,
P"�50)0, 350)0, 50)0�,
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Figure B1. (a}d): A concave room.
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The normalized wall admittances Z
�
G are

Z
�
G"�0)0141#0)000379j, 0)0141#0)000379j, 0)0758!0)0118j, 0)214#0)158j,

0)0311! 0)00394j, 0)150!0)123j, 0)0311!0)00394j, 0)0769!0)0748j,
0)0311!0)00394j, 0)0758!0)0118j, 0)0758!0)0118j, 0)0311!0)00394j,
0)0311!0)00394j, 0)0311!0)00394j, 0)0311!0)00394j, 0)0311! 0)00394j,
0)0311!0)00394j, 0)0311!0)00394j, 0)110!0)125j�.
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They produce absorption coe$cients �
���

for di!use sound incidence:
�

���
"�0)10, 0)10, 0)40, 0)70, 0)20, 0)60, 0)20, 0)40, 0)20, 0)40, 0)40, 0)20, 0)20, 0)20, 0)20, 0)20,

0)20, 0)20, 0)49�.
The parameters a, b, c, d of the reduced normal form of the wall equations are

normal form"

��0)0, 0)242536, 0)970143,!24)2536�, �0)0, 0)0, 1)0, 0)0�, �0)0,!0)164399, 0)986394,
24)6598�,

�0)0,!1)0, 0)0, 600)0�, �0)0,!0)110432,!0)993884, 240)189�, �0)0, 0)0,!1)0, 225)0�,
�0)0, 0)447214,!0)894427, 156)525�, �0)0, 1)0, 0)0, 0)0�, �!0)707107, 0)707107, 0)0,

70)7107�,
�!0)976187,!0)21693, 0)0, 276)586�, �0)976187,!0)21693, 0)0, 276)586�,
�0)707107, 0)707107, 0)0, 70)7107�, �0)485071, 0)485071,!0)727607, 175)838�,
�0)371391, 0)0, !0)928477, 255)331�, �0)369231,!0)107692,!0)923077, 270)0�,
�!0)36943,!0)102619,!0)923575, 269)376�, �!0)371391, 0)0, !0)928477, 255)331�,
�!0)485071, 0)485071,!0)727607, 175)838�, �0)0,!0)110432,!0)993884, 240)189��.

B.2. ROOM WITH CONVEX CORNERS

The walls are re-numbered (compared with the concave room). An orchestra pit is
arranged below the stage. See Figure B2 with the cuts through the room for wall numbering,
source and receiver positions.

walls"���215)0, 135)0, 0)0�, �250)0, 175)0, 0)0�, �!250)0, 175)0, 0)0�, �!215)0, 135)0,
0)0��,

��250)0, 175)0, 0)0�, �150)0, 600)0, 75)0�, �!150)0, 600)0, 75)0�, �!250)0, 175)0, 0)0��,
��150)0, 600)0, 75)0�, �150)0, 600)0, 162)5�, �125)0, 600)0, 175)0�, �!125)0, 600)0, 175)0�,
�!150)0, 600)0, 162)5�, �!150)0, 600)0, 75)0��,
��125)0, 600)0, 175)0�, �125)0, 375)0, 200)0�, �!125)0, 375)0, 200)0�,�!125)0, 600)0, 175)0��,
��125)0, 375)0, 200)0�, �125)0, 175)0, 225)0�, �!125)0, 175)0, 225)0�, �!125)0, 375)0, 200)0��,
��125)0, 175)0, 225)0�, �125)0, 100)0, 225)0�, �!125)0, 100)0, 225)0�, �!125)0, 175)0, 225��,
��125)0, 100)0, 225)0�, �100)0, 0)0, 175)0�, �!100)0, 0)0, 175)0�, �!125)0, 100)0, 225)0��,
��100)0, 0)0, 175)0�, �100)0, 0)0, 25)0�, �!100)0, 0)0, 25)0�, �!100)0, 0)0, 175)0��,
��100)0, 0)0, 25)0�, �185)0, 100)0, 25)0�, �!185)0, 100)0, 25)0�, �!100)0, 0)0, 25)0��,
��185)0, 100)0, 25)0�, �185)0, 100)0, 15)0�, �!185)0, 100)0, 15)0�, �!185)0, 100)0, 25)0��,
��185)0, 100)0, 15)0�, �125)0, 30)0, 15)0�, �!125)0, 30)0, 15)0�, �!185)0, 100)0, 15)0��,
��125)0, 30)0, 15)0�, �125)0, 30)0, !40)0�, �!125)0, 30)0,!40)0�, �!125)0, 30)0, 15)0��,
��125)0, 30)0,!40)0�, �210)0, 130)0,!40)0�, �!210)0, 130)0,!40)0�, �!125)0, 30)0,

!40)0��,
��210)0, 130)0,!40)0�, �210)0, 130)0, 15)0�, �!210)0, 130)0, 15)0�, �!210)0, 130)0,!40)0��,
��210)0, 130)0, 15)0�, �215)0, 135)0, 0)0�, �!215)0, 135)0, 0)0�, �!210)0, 130)0, 15)0��,
��210)0, 130)0, 25)0�, �100)0, 0)0, 25)0�, �100)0, 0)0, 175)0�, �210)0, 130)0, 175)0��,
��250)0, 175)0, 0)0�, �215)0, 135)0, 0)0�, �210)0, 130)0, 15)0�, �210)0, 130)0, 175)0�, �250)0,

175)0, 175)0��,
��250)0, 175)0, 0)0�, �250)0, 175)0, 175)0�, �150)0, 600)0, 160)0�, �150)0, 600)0, 75��,
��250)0, 175)0, 175)0�, �100)0, 0)0, 175)0�, �125)0, 100)0, 225)0��,
��250)0, 175)0, 175)0�, �125)0, 100)0, 225)0�, �125)0, 175)0, 225)0��,
��250)0, 175)0, 175)0�, �125)0, 175)0, 225)0�, �125)0, 600)0, 175)0�, �150)0, 600)0, 160)0��,
��210)0, 130)0, 25)0�, �210)0, 130)0, !40�, �125)0, 30)0,!40)0�, �125)0, 30)0, 15)0�,
�185)0, 100)0, 15)0�,
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Figure B2. (a}d): A room with convex corner.

MIRROR SOURCE METHOD IN ROOM ACOUSTICS 939
�185)0, 100)0, 25)0��,
��!210)0, 130)0, 175)0�, �!100)0, 0)0, 175)0�, �!100)0, 0)0, 25)0�, �!210)0, 130)0, 25)0��,
��!250)0, 175)0, 175)0�, �!210)0, 130)0, 175)0�, �!210)0, 130)0, 15)0�, �!215)0, 135)0, 0)0�,
�!250)0, 175)0, 0)0��,
��!150)0, 600)0, 75�, �!150)0, 600)0, 160)0�, �!250)0, 175)0, 175)0�, �!250)0, 175)0, 0)0��,
��!125)0, 100)0, 225)0�, �!100)0, 0)0, 175)0�, �!250)0, 175)0, 175)0��,



940 F. P. MECHEL
��!125)0, 175)0, 225)0�, �!125)0, 100)0, 225)0�, �!250)0, 175)0, 175)0��,
��!150)0, 600)0, 160)0�, �!125)0, 600)0, 175)0�, �!125)0, 175)0, 225)0�, �!250)0, 175)0,

175)0��,
��!125)0, 30)0, 15)0�, �!125)0, 30)0,!40)0�, �!210)0, 130)0,!40)0�, �!210)0, 130)0,

25)0�,
�!185)0, 100)0, 25)0�, �!185)0, 100)0, 15)0���
Q"�!75)0, 75)0,!38)5�,
P"�50)0, 350)0, 50)0�,
Aperture"��185)0, 100)0, 25)0�, �210)0, 130)0, 25)0�, �!210)0, 130)0, 25)0�, �!185)0,

100)0, 25)0��,
Z

�
G"�0)0141#0)000379j, 0)0758!0)0118j, 0)0758!0)0118j, 0)11!0)125j,

0)0311!0)00394j, 0)15!0)123j, 0)0311!0)00394j, 0)0769!0)0748j,
0)0141#0)000379j, 0)0141#0)000379j, 0)0758!0)0118j, 0)15!0)123j,
0)0141#0)000379j, 0)0758!0)0118j, 0)0141#0)000379j,
0)0311!0)00394j, 0)0758!0)0118j, 0)0758!0)0118j,
0)0311!0)00394j, 0)0311!0)00394j, 0)0311!0)00394j,
0)0758!0)0118j, 0)0311!0)00394j, 0)0758!0)0118j, 0)0758!0)0118j,
0)0311!0)00394j, 0)0311!0)00394j, 0)0311!0)00394j, 0)0758!0)0118j�.

The wall admittances produce sound absorption coe$cients for di!use sound incidence:
�

���
"�0)1, 0)4, 0)4, 0)5, 0)2, 0)6, 0)2, 0)4, 0)1, 0)1, 0)4, 0)6, 0)1, 0)4, 0)1, 0)2, 0)4, 0)4, 0)2, 0)2,

0)2, 0)4, 0)2, 0)4, 0)4, 0)2, 0)2, 0)2, 0)4�.
The parameters �a, b, c, d� of the reduced normal form of the walls are
normal form"��0)0, 0)0, 1)0, 0)0�, �0)0,!0)173785, 0)984784, 30)4124�, �0)0,!1)0, 0)0,

600)0�,
�0)0,!0)110432,!0)993884, 240)189�, �0)0,!0)124035,!0)992278, 244)969�,
�0)0, 0)0, !1)0, 225)0�, �0)0, 0)447214,!0)894427, 156)525�, �0)0, 1)0, 0)0, 0)0�,
�0)0, 0)0, 1)0,!25)0�, �0)0, 1)0, 0)0,!100)0�, �0)0, 0)0,!1)0, 15)0�, �0)0, 1)0, 0)0,!30)0�,
�0)0, 0)0, 1)0, 40)0�, �0)0,!1)0, 0)0, 130)0�, �0)0, 0)948683, 0)316228,!128)072�,
�!0)763386, 0)645942, 0)0, 76)3386�, �!0)752207, 0)658181,!0)031342, 72)8701�,
�!0)973417,!0)229039, 0)0, 283)436�, �!0)558217, 0)478471,!0)677834, 174)443�,
�!0)371391, 0)0,!0)928477, 255)331�, �!0)369195,!0)108587,!0)922987, 272)824�,
�!0)761939, 0)647648, 0)0, 75)813�, �0)763386, 0)645942, 0)0, 76)3386�,
�0)747409, 0)664364, 0)0, 70)5887�, �0)973417,!0)229039, 0)0, 283)436�,
�0)558217, 0)478471,!0)677834, 174)443�, �0)371391, 0)0,!0)928477, 255)331�,
�0)511898,!0)100372,!0)853163, 273)514�, �0)761939, 0)647648, 0)0, 75)813��.
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